1
|
Wang Y, Wu G, Wang Y, Rehman A, Yu L, Zhang H, Jin Q, Suleria HAR, Wang X. Recent developments, challenges, and prospects of dietary omega-3 PUFA-fortified foods: Focusing on their effects on cardiovascular diseases. Food Chem 2025; 470:142498. [PMID: 39736180 DOI: 10.1016/j.foodchem.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Dietary omega-3 polyunsaturated fatty acids (Dω-3 PUFAs) have been extensively studied and have been proven to offer notable benefits for heart health. Scientific meta-analysis strongly endorses them as potent bioactive agents capable of preventing and managing cardiovascular diseases (CVDs). Fortification of foods with Dω-3 PUFAs is a potential strategy for enhancing Dω-3 PUFA intake in an effort to continue strengthening public health outcomes. This review analyzed recent trends in the fortification of foods with Dω-3 PUFAs in relation to technological developments, challenges linked to the method, and future scope. Additionally, recent clinical trials and research on the effect of Dω-3 PUFA-fortified food consumption on cardiovascular health are reviewed. Technological trends in fortification methods, namely microencapsulation- and nanoencapsulation, have made considerable progress to date, along with excellent stability in both processing and storage conditions and favorable bioaccessibility and sensory attributes of fortified foods. There is a tremendous deal of promise for cardiovascular health based on recent clinical trial findings that fortifying food with Dω-3 PUFAs decreased the incidence of heart disease, blood pressure, and lipid profiles. In summary, substantial progress has been made in addressing the challenges of Dω-3 PUFA fortification. However, further multidisciplinary research is needed to inculcate effectiveness toward achieving the maximum possible Dω-3 PUFAs to protect against the harmful effects of CVDs and continue global health progress.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Hashemi N, Tsochatzis E, Rasmussen MK, Corredig M. An in vitro study of oral bioavailability of lupin stabilized nanocarriers for curcumin. Food Chem 2025; 468:142384. [PMID: 39667234 DOI: 10.1016/j.foodchem.2024.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
In this study, the bioaccessibility and bioavailability of curcumin encapsulated into different lupin protein isolate-based carriers was evaluated by coupling an in vitro gastrointestinal digestion (INFOGEST) with an in vitro co-culture absorption model, Caco-2/HT29-MTX, consisting of both absorptive and mucus producing cells. A targeted ultrahigh-performance quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) method was applied to monitor the fate of curcumin post digestion and absorption, specifically analyzing the apical, cellular, and basolateral fractions. Lupin protein nanoparticles, obtained by desolvation, protected curcumin from degradation better than oil in water (O/W) emulsions stabilized with lupin protein isolate. A recovery of 70 % of initial curcumin was found in the whole digesta of nanoparticles, whereas the emulsion systems displayed ≤35 % recovery. Interestingly, unlike in the case of emulsions, where curcumin was found in the micellar phase, most of the curcumin in the digesta of nanoparticles was recovered in the insoluble phase, highlighting the influence of the matrix structure in ensuring bioaccessibility of bioactive components. Regardless of the treatment, curcumin was not detected in the basolateral compartment, after absorption and transport through the in vitro cell monolayer model. However, a noteworthy proportion of curcumin, 54 % for protein nanoparticles and ≤ 24 % for emulsions, was retrieved within the cell monolayer. Non-targeted metabolomics analysis revealed the presence of a range of curcumin metabolites in the basolateral fraction and showed distinct profiles depending on the type (structure) of the delivery systems. The study highlights the critical need for thorough research into the behavior of bioactive compounds within the gut and emphasizes the necessity for future studies aimed at gaining a deeper understanding of the impact of the food matrix. Such insights are vital for enhancing and optimizing the delivery of bioactive compounds from complex food sources.
Collapse
Affiliation(s)
- Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Emmanouil Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| |
Collapse
|
3
|
Astaneh ME, Fereydouni N. Nanocurcumin-enhanced zein nanofibers: Advancing macrophage polarization and accelerating wound healing. Regen Ther 2025; 28:51-62. [PMID: 39687330 PMCID: PMC11647652 DOI: 10.1016/j.reth.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Chronic wounds continue to pose a significant global challenge, incurring substantial costs and necessitating extensive research in wound healing. Our previous work involved synthesizing zein nanofibers embedded with 5 %, 10 %, and 15 % nano-curcumin (Zein/nCUR 5, 10, and 15 % NFs), and examining their physicochemical and biological properties. This study aims to explore the potential of these nanofibers in macrophage (MØ) polarization and wound healing. Methods We assessed the survival of RAW264.7 cells cultured on Zein/nCUR 5, 10, and 15 % NFs using the MTT assay. To evaluate MØ polarization, we measured the expression of iNOS and Arg-1 genes in MØs cultured on Zein/nCUR 10 % NFs through real-time PCR. Furthermore, we examined the nanofibers' impact on pro-inflammatory cytokine expression (IL-1β, IL-6, TNF-α) in MØs via real-time PCR. The wound healing efficacy of Zein/nCUR 10 % NFs was tested on 54 male rats with full-thickness wounds, with assessments conducted on days 3, 7, and 14. Wound closure, re-epithelialization, and collagen secretion were evaluated through photographic analysis and tissue staining. Statistical analyses were performed using GraphPad Prism 6, with significance set at p < 0.05. Results Zein/nCUR 10 % NFs significantly enhanced the survival of RAW264.7 cells compared to other groups. They also markedly reduced iNOS expression and increased Arg-1 expression, indicating successful polarization of M1 to M2 MØs. Additionally, these nanofibers decreased the expression of IL-1β, IL-6, and TNF-α, and significantly improved wound closure, re-epithelialization, and collagen deposition compared to control and Zein groups. Conclusions This study demonstrates that Zein/nCUR 10 % NFs effectively polarize MØs from M1 to M2, significantly enhancing wound healing, thus offering a promising therapeutic approach for improved wound care.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Sharma S, Lal UR, Bal T. pH-sensitive polymeric micelles of polyvinyl acetate grafted neem gum amphiphilic graft copolymer for curcumin delivery. Int J Biol Macromol 2025; 303:140574. [PMID: 39920929 DOI: 10.1016/j.ijbiomac.2025.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
The increasing demand for efficient drug delivery systems to address the challenges of hydrophobic therapeutic agents, such as poor solubility and bioavailability, has driven research into polymeric micelles. In this study, polymeric micelles were formulated using polyvinyl acetate grafted neem gum amphiphilic graft copolymer (NG-g-PVAc), synthesized via a microwave-assisted technique, to encapsulate and deliver curcumin, a hydrophobic model drug with significant therapeutic potential. Curcumin-loaded polymeric micelles (CUR-PMs) were prepared using a co-solvent evaporation method, achieving a high encapsulation efficiency of 95.42 ± 2.22 % and a critical micelle concentration (CMC) of 0.027 mg/mL, indicating stability in aqueous environments. Physicochemical characterization, including particle size analysis, XRD, and TEM, confirmed the formation of well-dispersed, spherical micelles. In vitro release studies revealed a pH-sensitive and sustained release profile over 8 days, with enhanced drug release at pH 7.4, simulating physiological conditions. CUR-PMs demonstrated superior antibacterial activity against gram-positive bacteria, suggesting potential in wound-healing applications, and exhibited significantly higher cytotoxicity against Hep-G2 cells compared to free curcumin, highlighting improved therapeutic efficacy. Toxicological studies in zebrafish and murine models confirmed the safety and biocompatibility of CUR-PMs, supporting their suitability for biomedical applications. This work highlights the potential of neem gum-based polymeric micelles as a cost-effective and environmentally friendly drug delivery platform. However, limitations such as scalability and long-term stability under varying storage conditions require further investigation to facilitate clinical translation.
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uma R Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160067, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| |
Collapse
|
5
|
Chen S, Chen X, Yuan G. Chitosan/squid ring teeth protein hydrogels for the controlled release of curcumin. Int J Biol Macromol 2025; 291:139163. [PMID: 39732252 DOI: 10.1016/j.ijbiomac.2024.139163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated. Results indicated that increasing SRT content enhanced the elasticity, viscosity, gel strength, hardness, and thermal stability of CH/SRTs. Specifically, the hardness and gel strength of CH/SRT3 (Chitosan: SRT, 1:1) were 207.8 % and 220.9 % higher, respectively, than those of the pure chitosan hydrogel. Higher SRT content significantly increased the curcumin encapsulation efficiency of Cur-CH/SRTs while substantially reducing curcumin release in simulated gastrointestinal fluid. Compared to the curcumin-loaded pure chitosan hydrogel, the curcumin release rate of Cur-CH/SRT3 decreased by 56.12 % after 480 min of simulated gastrointestinal digestion. These findings were attributed to reduced swelling and improved gel strength of Cur-CH/SRTs with SRT addition. Consequently, CH/SRTs demonstrate potential for applications in the controlled release of drugs and bioactive agents.
Collapse
Affiliation(s)
- Shiyu Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoe Chen
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | - Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Li C, Su X, Cao C, Li X, Zou M. Chemodynamic covalent adaptable network-induced robust, self-healing, and degradable fluorescent elastomers for multicolor information encryption. Chem Sci 2025; 16:2295-2306. [PMID: 39776657 PMCID: PMC11701728 DOI: 10.1039/d4sc06855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed. Thanks to the CCANs, the resulting elastomer exhibits a tensile strength of 33.44 MPa (300 times higher than that of a linear elastomer) and an elongation at break of 1265%, and its mechanical properties can be restored to about 20 MPa after 72 h of healing at room temperature, and a self-healing efficiency of 94.67% can be realized for 24 h at 70 °C. Simultaneously, the dynamic chemical balance of keto and enol structural transitions of curcumin chain segments can be driven by CCANs, realizing multi-color (from yellow to violet) display and broad wavelength (300-500 nm) excitation, which in turn enables surface read-write and color rosette and QR code pattern printing. In addition, it can also achieve adaptive degradation under biological, alkaline, and hot water conditions. This work has guiding significance for developing the next generation of high-performance multifunctional elastomer materials, which have potential applications in the field of smart anti-counterfeiting materials and smart flexible optoelectronics.
Collapse
Affiliation(s)
- Changyang Li
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
- School of Materials Science and Engineering, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Xing Su
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
- School of Materials Science and Engineering, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Chuanbao Cao
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
- School of Materials Science and Engineering, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Xiaodong Li
- School of Materials Science and Engineering, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Meishuai Zou
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
- School of Materials Science and Engineering, Beijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| |
Collapse
|
7
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy: A review. Int J Biol Macromol 2025:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The use of natural products for cancer treatment has a lengthy history. The safety and multifunctionality of naturally occurring substances have rendered them appropriate for cancer treatment. Curcumin influences multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced scrutiny due to its inadequate pharmacokinetic profile. Consequently, nanoparticles have been created for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to heightened cytotoxicity. Carbohydrate nanoparticles provide a promising solution for delivering curcumin in cancer treatment by tackling its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, safeguard curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization guarantee selective distribution to tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, create a revolutionary platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jinxiang Wang
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
8
|
Han A, Baek Y, Lee HG. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods 2025; 14:385. [PMID: 39941977 PMCID: PMC11816578 DOI: 10.3390/foods14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The emulsification of natural pigment is a widely utilized strategy to enhance its stability in the food industry. However, high turbidity in emulsions often causes color fading, limiting their application. Here, we developed a comprehensive Pickering emulsion (PE) system to improve the color intensity and stability of turmeric oleoresin (Tur) under various food processing conditions. Specifically, the effects of two encapsulation positions within the PE were compared: the inner oil phase (Tur-IPE) and the outer solid particle layer (Tur-OPE). Lysozyme and carboxymethyl cellulose nanoparticles (NPs) were used as natural solid particle surfactants, with their successful formation confirmed through physical property analysis and FTIR spectroscopy. The optimal oil fraction (φ) for suitable physical properties of PE was determined to be 0.2. Interestingly, Tur-OPE significantly exceeded Tur-conventional emulsions (Tur-CE) and Tur-IPE in terms of color vividness, exhibiting higher redness and lower lightness (p < 0.05). During thermal processing at 70 and 90 °C, all emulsions demonstrated significantly enhanced heat resistance, retaining 1.3 to 1.6 times more Tur, respectively, compared to unencapsulated Tur (free Tur) (p < 0.05). Furthermore, Tur's pH instability was significantly overcome by encapsulation in all emulsion systems (p < 0.05). During 4 weeks of storage period, Tur-OPE demonstrated the highest retention rates, with the half-life of Tur increasing in the following order: free Tur < Tur-CE < Tur-IPE < Tur-OPE. Thus, we highlighted the important role of encapsulation position in PEs in improving and maintaining the color stability and vividness of natural pigments under various food processing conditions.
Collapse
Affiliation(s)
| | | | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (A.H.); (Y.B.)
| |
Collapse
|
9
|
Adlia A, Aslan CC, Safitri L, Adnyana IK. Turmeric-black pepper-honey nanoemulsion formulation and antiulcerogenic effect evaluation against ethanol-induced gastric ulcers in rats. PLoS One 2025; 20:e0317899. [PMID: 39841672 PMCID: PMC11753650 DOI: 10.1371/journal.pone.0317899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Gastric ulcer is a common disorder of the digestive system. The combination of turmeric and honey is known to treat stomach ulcers. However, curcumin, an active component in turmeric, has limitations, i.e., poor water solubility and low oral bioavailability. Therefore, turmeric and honey were formulated into a nanoemulsion with black pepper to enhance curcumin bioavailability. The study followed a systematic approach to optimize the nanoemulsion formula, determine stability, and evaluate ulcer healing activity in rats with ethanol-induced gastric ulcers. Nanoemulsion was prepared using a low-energy emulsification method called emulsion phase inversion (EPI). Two stability evaluations were carried out, i.e., storage and freeze-thaw stability tests. The organoleptic, droplet size, polydispersity index, pH, viscosity, and curcumin content of the nanoemulsion were evaluated. Male Wistar albino rats were induced with 96% ethanol for six days. The rats were divided into six groups, i.e., healthy control, ulcerated control, omeprazole, two different doses of turmeric, honey, and black pepper nanoemulsion (NTBH1 and NTBH2), and turmeric and honey nanoemulsion (NTH). The antiulcer activity was determined by measuring the ulcer area, ulcer index, curative index, ulcer severity score, and histology. The best formula with the smallest droplet size, i.e., 144.6±3.8 nm, was obtained from the nanoemulsion using Tween 80 as surfactant, glycerin as cosolvent, and sodium alginate as viscosity enhancer. The result showed that the nanoemulsion was stable after being stored at 25 and 40°C for four weeks and after six cycles of freeze-thaw test. The ulcer index of the ulcerated rats from the lowest to the highest, i.e., NTBH2, omeprazole, NTH, and NTBH1. In conclusion, the nanoemulsion developed in this study containing turmeric, honey, and black pepper holds promising potential in treating gastric ulcers, offering a hopeful outlook for future treatments.
Collapse
Affiliation(s)
- Amirah Adlia
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | | | - Lia Safitri
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - I. Ketut Adnyana
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
10
|
Schönenberger KA, Ranzini C, Laval J, Bellenger P, Tenon M, Fança-Berthon P. The influence of food matrices on the bioavailability of curcuminoids from a dried colloidal turmeric suspension: a randomized, crossover, clinical trial. Food Funct 2025; 16:774-784. [PMID: 39792007 DOI: 10.1039/d4fo03414g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Curcuminoid absorption can be influenced by the presence of additional compounds, but there has been no study investigating this in a robust manner. The aim of this clinical trial was to assess the effect of the type of food matrix on the absorption of curcuminoids from a highly bioavailable turmeric formulation. Participants consumed the turmeric formulation in the form of capsules, a ready-to-drink fruit nectar, a sports nutrition bar, a dairy analogue (oat milk), pectin gummies, and a probiotic drink in a randomized, crossover study. Plasma samples were collected over a 24-hour period to assess the pharmacokinetics of curcuminoids. The relative bioavailability of total curcuminoids was increased in all the food matrices compared to that in the capsule formulation. The dairy analogue showed the highest increase in dose-normalized AUC24 h (+76%, p < 0.0001) and Cmax (+105%, p < 0.0001). The sports nutrition bar resulted in increased dose-normalized AUC24 h (+40%, p = 0.0112) and Cmax (+74%, p < 0.0001). The probiotic drink showed increased dose-normalized AUC24 h (+35%, p = 0.0318) and Cmax (+52%, p < 0.0001). The ready-to-drink and gummy formulations were bioequivalent to the capsules. The distribution of curcuminoid metabolites was similar in all the matrices. In conclusion, there was no negative food matrix effect; on the contrary, the bioavailability of curcuminoids can be improved when administered via food matrices, particularly those containing lipids in a suspended form or polar lipids.
Collapse
|
11
|
Zhang Y, Yi C, Wu D, Cui Y, Wang Z. Waterborne polyurethane with curcumin moieties for rapid responsive warnings and emergency antimicrobial action: Application in crab freshness preservation. Food Chem 2025; 463:141430. [PMID: 39340917 DOI: 10.1016/j.foodchem.2024.141430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The ideal smart food-packaging film exhibits responsive color warnings and antimicrobial properties when food metamorphism starts. However, in practical applications, these film responses are slow, usually taking several days, which is not conducive to effective antimicrobial effects. In this study, natural plant-derived curcumin was introduced into waterborne polyurethane (WPU) dispersions through two modes: free-state and end-capping. During the film-forming process, under the influence of surface tension, the capped-end curcumin migrated to the surface and further immobilized free curcumin through π-π interactions. Consequently, curcumin accumulated on the film surface, preventing flipping in moist or hydrophobic environments, in addition to acting as a color indicator for the rapid detection of crab spoilage, thus generating ammonia for a real-time response (of approximately 60 s). Simultaneously, the curcumin degraded, producing water-soluble antimicrobial curcumin-degradation products. This study significantly advances the practical application of curcumin in smart food packaging.
Collapse
Affiliation(s)
- Yubin Zhang
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China
| | - Chanchang Yi
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China
| | - Dan Wu
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China
| | - Yuanyuan Cui
- Shimazu China Co. LTD., No. 180 Yizhou Road, Xuhui District, Shanghai 200233, China
| | - Zefeng Wang
- College of Ecology, Lishui University, Lishui 323000, People's Republic of China; Research Institute of new materials and technologies for green manufacturing of synthetic leather, Lishui 323000, People's Republic of China.
| |
Collapse
|
12
|
Upadhyaya AK, Agarwala P, Sharma C, Sasmal DK. Synthesis and Characterization of N-Doped Carbon Quantum Dots and its Application for Efficient Delivery of Curcumin in Live Cell. Chemphyschem 2024:e202400855. [PMID: 39714983 DOI: 10.1002/cphc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility. To synthesize the N-CQD, we use a carbon source found naturally (lemon juice) and for doping, we use N-rich doping agents such as ethylene diamine and urea by using eco-friendly chemical oxidation methods. The resulting N-CQDs, with particle sizes under 10 nm, exhibit a good quantum yield, reinforcing their utility for biomedical applications. N-CQDs and drug-loaded particles are evaluated using various techniques like UV-Vis, Fluorescence Spectroscopy, Dynamic Light Scattering (DLS), and Atomic Force Microscopy (AFM) as well. Additionally, we report a remarkable method to use N-CQDs as carriers for the anticancer drug curcumin, significantly enhancing the solubility in live cells. Our research also delved into the application of N-CQDs in in vivo bioimaging and drug release studies within live cancer cells, with a particular focus on their pH-dependence behavior.
Collapse
Affiliation(s)
- Arun K Upadhyaya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Chanchal Sharma
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| |
Collapse
|
13
|
Sajjadi S, Shayanfar A, Kiafar F, Siahi-Shadbad M. Tacrolimus: Physicochemical stability challenges, analytical methods, and new formulations. Int J Pharm X 2024; 8:100285. [PMID: 39328187 PMCID: PMC11426107 DOI: 10.1016/j.ijpx.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Tacrolimus, a potent immunosuppressant, is widely used in several formulations to treat organ rejection in transplant patients. However, its physicochemical stability poses significant challenges, including thermal instability, photostability issues, low solubility, and drug-excipient incompatibility. This review article focuses on the details of these challenges and discusses the analytical methods employed to study tacrolimus stability, such as thermal, spectroscopic, and chromatographic methods in different formulations. New formulations to enhance tacrolimus stability are explored, including lipid-based nanocarriers, polymers, and thin film freezing. Researchers and formulators can optimize tacrolimus formulations to improve efficacy and patient outcomes by understanding and addressing these stability challenges.
Collapse
Affiliation(s)
- Sara Sajjadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Golmohammadi M, Zamanian MY, Al‐Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, Tahernia H, Hjazi A, Jissir SA, Hakimizadeh E. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024; 7:853-867. [PMID: 39219410 PMCID: PMC11680487 DOI: 10.1002/ame2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression. AIMS The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms. MATERIALS & METHODS The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles. RESULTS This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis. CONCLUSION CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
Collapse
Affiliation(s)
| | - Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Ahmed Muzahem Al‐Ani
- Department of Medical Laboratories TechnologyAL‐Nisour University CollegeBaghdadIraq
| | | | - Ali Kamil Kareem
- Biomedical Engineering DepartmentAl‐Mustaqbal University CollegeHillahIraq
| | - Zeinab Hashem Aghaei
- Preventative Gynecology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Tahernia
- Molecular Medicine Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesPrince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Elham Hakimizadeh
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
15
|
Chen ZW, Hua ZL. Characteristics of organic matter driven by Eichhornia crassipes during co-contamination with per(poly)fluoroalkyl substances (PFASs) and microplastics (MPs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176114. [PMID: 39255929 DOI: 10.1016/j.scitotenv.2024.176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Co-contamination with MPs and PFASs has been recorded, particularly in surface-water environments. Floating macrophyte microcosms are an important part of the surface water ecosystem, and dissolved organic matter (DOM) driven by floating macrophytes (FMDDOM) is critical for maintaining material circulation. However, knowledge gaps remain regarding the impact of MPs and PFASs co-pollution on FMDDOM. An greenhouse simulation experiment was conducted in this study to investigate the effects of four PFASs, perfluorooctanoic acid (PFOA), perfluoro-octane-sulfonic acid (PFOS), perfluoro-2-methyl-3-oxahexanoic acid (Gen X), and potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (F-53B), on FMDDOM sourced from Eichhornia crassipes (E. crassipes), a typical floating macrophyte, in the presence and absence of polystyrene (PS) MPs. Four PFASs increased FMDDOM release from E. crassipes, leading to a 32.52-77.49 % increase in dissolved organic carbon (DOC) levels. PS MPs further increased this, with results ranging from -21.28 % to 26.49 %. Based on the parallel factor analysis (PARAFAC), FMDDOM was classified into three types of fluorescent components: tryptophan-like, humic-like, and tyrosine-like compounds. Contaminants of MPs and PFASs modified the relative abundance of these three components. Protein secondary structure analysis showed that fluorocarbon bonds tended to accumulate on the α-helix of proteins in FMDDOM. The relative abundance of fluorescent and chromophorous FMDDOMs varied from 0.648 ± 0.044 to 0.964 ± 0.173, indicating that the photochemical structures of the FMDDOM were modified. FMDDOM exhibits decreased humification and increased aromaticity when contaminated with MPs and PFASs, which may be detrimental to the geochemical cycling of carbon. This study offers a theoretical basis for assessing the combined ecological risks of MPs and PFASs in floating macrophyte ecosystems.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| |
Collapse
|
16
|
Sharma A, Sharma D, Lin H, Zhou H(J, Zhao F. Self-Exfoliated Guanidinium Covalent Organic Nanosheets as High-Capacity Curcumin Carrier. Biomimetics (Basel) 2024; 9:709. [PMID: 39590281 PMCID: PMC11592196 DOI: 10.3390/biomimetics9110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing novel drug carriers to enhance drug efficacy. Guanidinium Covalent Organic Nanosheets (gCONs) offer promising alternatives due to their high porosity, surface area, loading capacity, and ability to provide controlled, sustained, and target-specific drug delivery. Herein, we successfully synthesized self-exfoliated gCONs using a Schiff base condensation reaction and embedded curcumin (CUR), a polyphenolic pleiotropic drug with antioxidant and anti-inflammatory properties, via the wet impregnation method. The BET porosimeter exhibited the filling of gCON pores with CUR. Morphological investigations revealed the formation of sheet-like structures in gCON. Culturing human dermal fibroblasts (hDFs) on gCON demonstrated cytocompatibility even at a concentration as high as 1000 µg/mL. Drug release studies demonstrated a controlled and sustained release of CUR over an extended period of 5 days, facilitated by the high loading capacity of gCON. Furthermore, the inherent antioxidant and anti-inflammatory properties of CUR were preserved after loading into the gCON, underscoring the potential of CUR-loaded gCON formulation for effective therapeutic applications. Conclusively, this study provides fundamental information relevant to the performance of gCONs as a drug delivery system and the synergistic effect of CUR and CONs addressing issues like drug bioavailability and instability.
Collapse
Affiliation(s)
- Archita Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| | - Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (H.L.); (H.Z.)
| | - Hongcai (Joe) Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; (H.L.); (H.Z.)
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (A.S.); (D.S.)
| |
Collapse
|
17
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
18
|
Bao Z, Tom G, Cheng A, Watchorn J, Aspuru-Guzik A, Allen C. Towards the prediction of drug solubility in binary solvent mixtures at various temperatures using machine learning. J Cheminform 2024; 16:117. [PMID: 39468626 PMCID: PMC11520512 DOI: 10.1186/s13321-024-00911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
Drug solubility is an important parameter in the drug development process, yet it is often tedious and challenging to measure, especially for expensive drugs or those available in small quantities. To alleviate these challenges, machine learning (ML) has been applied to predict drug solubility as an alternative approach. However, the majority of existing ML research has focused on the predictions of aqueous solubility and/or solubility at specific temperatures, which restricts the model applicability in pharmaceutical development. To bridge this gap, we compiled a dataset of 27,000 solubility datapoints, including solubility of small molecules measured in a range of binary solvent mixtures under various temperatures. Next, a panel of ML models were trained on this dataset with their hyperparameters tuned using Bayesian optimization. The resulting top-performing models, both gradient boosted decision trees (light gradient boosting machine and extreme gradient boosting), achieved mean absolute errors (MAE) of 0.33 for LogS (S in g/100 g) on the holdout set. These models were further validated through a prospective study, wherein the solubility of four drug molecules were predicted by the models and then validated with in-house solubility experiments. This prospective study demonstrated that the models accurately predicted the solubility of solutes in specific binary solvent mixtures under different temperatures, especially for drugs whose features closely align within the solutes in the dataset (MAE < 0.5 for LogS). To support future research and facilitate advancements in the field, we have made the dataset and code openly available. Scientific contribution Our research advances the state-of-the-art in predicting solubility for small molecules by leveraging ML and a uniquely comprehensive dataset. Unlike existing ML studies that predominantly focus on solubility in aqueous solvents at fixed temperatures, our work enables prediction of drug solubility in a variety of binary solvent mixtures over a broad temperature range, providing practical insights on the modeling of solubility for realistic pharmaceutical applications. These advancements along with the open access dataset and code support significant steps in the drug development process including new molecule discovery, drug analysis and formulation.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Gary Tom
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Austin Cheng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | | | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON, M5S 1M1, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
19
|
Llaguno-Munive M, Vazquez-Lopez MI, Garcia-Lopez P. Solid Lipid Nanoparticles, an Alternative for the Treatment of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10712. [PMID: 39409041 PMCID: PMC11476567 DOI: 10.3390/ijms251910712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer cells, providing greater efficiency than existing treatments in various studies. The encapsulation of antineoplastic drugs in SLNs has facilitated a sustained, controlled, and targeted release, which enhances therapeutic efficiency and reduces adverse effects. Moreover, the surface of SLNs can be modified to increase efficiency. For instance, the coating of these particles with polyethylene glycol (PEG) decreases their opsonization, resulting in a longer life in the circulatory system. The creation of positively charged cationic SLNs (cSLNs), achieved by the utilization of surfactants or ionic lipids with positively charged structural groups, increases their affinity for cell membranes and plasma proteins. Hyaluronic acid has been added to SLNs so that the distinct pH of tumor cells would stimulate the release of the drug and/or genetic material. The current review summarizes the recent research on SLNs, focusing on the encapsulation and transport of therapeutic agents with a cytotoxic effect on triple-negative breast cancer.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Maria Ines Vazquez-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología y Nanomedicina, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| |
Collapse
|
20
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
21
|
D’Angeli F, Granata G, Romano IR, Distefano A, Lo Furno D, Spila A, Leo M, Miele C, Ramadan D, Ferroni P, Li Volti G, Accardo P, Geraci C, Guadagni F, Genovese C. Biocompatible Poly(ε-Caprolactone) Nanocapsules Enhance the Bioavailability, Antibacterial, and Immunomodulatory Activities of Curcumin. Int J Mol Sci 2024; 25:10692. [PMID: 39409022 PMCID: PMC11476408 DOI: 10.3390/ijms251910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Curcumin (Cur), the primary curcuminoid found in Curcuma longa L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability. Additionally, adipose-derived stem cells (ADSCs) possess immunomodulatory properties, making them useful for treating inflammatory and autoimmune conditions. This study aims to verify the efficacy of poly(ε-caprolactone) nanocapsules (NCs) in improving Cur's bioavailability, antibacterial, and immunomodulatory activities. The Cur-loaded nanocapsules (Cur-NCs) were characterized for their physicochemical properties (particle size, polydispersity index, Zeta potential, and encapsulation efficiency) and stability over time. A digestion test simulated the behavior of Cur-NCs in the gastrointestinal tract. Micellar phase analyses evaluated the Cur-NCs' bioaccessibility. The antibacterial activity of free Cur, NCs, and Cur-NCs against various Gram-positive and Gram-negative strains was determined using the microdilution method. ADSC viability, treated with Cur-NCs and Cur-NCs in the presence or absence of lipopolysaccharide, was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. Additionally, ADSC survival was assessed through the Muse apoptotic assay. The expression of both pro-inflammatory (interleukin-1β and tumor necrosis factor-α) and anti-inflammatory (IL-10 and transforming growth factor-β) cytokines on ADSCs was evaluated by real-time polymerase chain reaction. The results demonstrated high stability post-gastric digestion of Cur-NCs and elevated bioaccessibility of Cur post-intestinal digestion. Moreover, Cur-NCs exhibited antibacterial activity against Escherichia coli without affecting Lactobacillus growth. No significant changes in the viability and survival of ADSCs were observed under the experimental conditions. Finally, Cur-NCs modulated the expression of both pro- and anti-inflammatory cytokines in ADSCs exposed to inflammatory stimuli. Collectively, these findings highlight the potential of Cur-NCs to enhance Cur's bioavailability and therapeutic efficacy, particularly in cell-based treatments for inflammatory diseases and intestinal dysbiosis.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Giuseppe Granata
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy; (I.R.R.); (D.L.F.)
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy; (A.D.); (G.L.V.)
| | - Paolo Accardo
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Corrada Geraci
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy; (G.G.); (P.A.); (C.G.)
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.S.); (M.L.); (C.M.); (D.R.); (P.F.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy;
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
22
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Pradeep Prabhu P, Mohanty B, Lobo CL, Balusamy SR, Shetty A, Perumalsamy H, Mahadev M, Mijakovic I, Dubey A, Singh P. Harnessing the nutriceutics in early-stage breast cancer: mechanisms, combinational therapy, and drug delivery. J Nanobiotechnology 2024; 22:574. [PMID: 39294665 PMCID: PMC11411841 DOI: 10.1186/s12951-024-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a significant health challenge, ranking as the second leading cause of cancer-related death and the primary cause of mortality among women aged 45 to 55. Early detection is crucial for optimal prognosis. Among various treatment options available for cancer, chemotherapy remains the predominant approach. However, its patient-friendliness is hindered by cytotoxicity, adverse effects, multi-drug resistance, potential for recurrence, and high costs. This review explores extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. RESULTS Consequently, there is growing interest in exploring the relationship between diet, cancer, and complementary and alternative medicine (CAM) in cancer chemotherapy. Phytochemicals like berberine, curcumin, quercetin, lycopene, sulforaphane, resveratrol, epigallocatechin gallate, apigenin, genistein, thymoquinone have emerged as promising candidates due to their pleiotropic actions on target cells through multiple mechanisms with minimal toxicity effects. This review focuses on extensively studied phytomolecules, elucidating their molecular mechanisms. It also emphasizes the importance of combination therapy, highlighting recent advancements in the exploration of diverse drug delivery systems and novel routes of administration. The regulatory considerations are crucial in translating these approaches into clinical practices. CONCLUSION The present review provides a comprehensive understanding of the molecular mechanisms, coupled with well-designed clinical trials and adherence to regulatory guidelines, which pave the way for nutrition-based combination therapies to become a frontline approach in early-stage BC treatment.
Collapse
Affiliation(s)
- Pavithra Pradeep Prabhu
- Nitte (Deemed to Be University), Department of Pharmacognosy, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Barsha Mohanty
- Nitte (Deemed to Be University), Department of Molecular Genetics and Cancer Biology, Nitte University Centre for Science, Education and Research, Mangaluru, 575018, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Amitha Shetty
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea, Hanyang University, Seoul, Republic of Korea
| | - Manohar Mahadev
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Akhilesh Dubey
- Nitte (Deemed to Be University), Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Mangaluru, 575018, India.
| | - Priyanka Singh
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
24
|
Luo M, Wong S, Thanuphol P, Du H, Han Y, Lin M, Guo X, Bechtel TD, Gibbons JG, Xiao H. Isolation and Identification of Human Gut Bacteria Capable of Converting Curcumin to Its Hydrogenated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20410-20418. [PMID: 39240774 DOI: 10.1021/acs.jafc.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Curcumin is widely recognized for its health benefits, though the role of gut microbiota in its metabolic transformation was not well studied. In this study, bacterial strains capable of metabolizing curcumin were isolated from human stool samples. Using 16S rRNA and whole-genome sequencing, two novel strains (Clostridium butyricum UMA_cur1 and Escherichia coli UMA_cur2) were identified. In addition, the metabolic products were analyzed using liquid chromatography-mass spectrometry. These strains efficiently converted curcumin into dihydro-curcumin (DHC) and tetrahydro-curcumin (THC). Notably, E. coli UMA_cur2 also produced hexahydro-curcumin (HHC) and octahydro-curcumin (OHC), marking the first identification of a strain capable of such transformations. The absence of the YncB gene (typically involved in curcumin conversion) in C. butyricum UMA_cur1 suggests an alternative metabolic pathway. Curcumin metabolism begins during the stationary growth phase, indicating that it is not crucial for primary growth functions. Furthermore, E. coli UMA_cur2 produced these metabolites sequentially, starting with DHC and THC and progressing to HHC and OHC. These findings identified two novel strains that can metabolize curcumin to hydrogenated metabolites, which enhance our understanding of the interaction between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Siu Wong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pongpol Thanuphol
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Margaret Lin
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Pereira CH, Martins AFL, Morais MO, de Sousa-Neto SS, da Silva ACG, Arantes DAC, De Oliveira Moreira VHL, Valadares MC, Freitas NMA, Leles CR, Mendonça EF. Oral mucositis management with photobiomodulation, Bidens pilosa L. (Asteraceae) and Curcuma longa L. (Zingiberaceae), the FITOPROT herbal medicine, and its influence on inflammatory cytokine levels: a randomized clinical trial. Support Care Cancer 2024; 32:628. [PMID: 39223301 DOI: 10.1007/s00520-024-08842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This randomized clinical trial aimed to compare the effects of a mucoadhesive formula, containing curcuminoids from Curcuma longa L. and glycerinated extract of Bidens pilosa L. (FITOPROT), associated with photobiomodulation (PBM), and of PBM exclusively, on the incidence of oral mucositis (OM)-induced by radiotherapy (RT) in the head and neck region, and the salivary expression of inflammatory cytokines, in patients with head neck cancer. METHODS Patients were randomly assigned into two intervention groups-FITOPROT + PBM (n = 25) or PBM (n = 27). PBM protocol comprised a wavelength of 660 nm, 25 mW, 0.25 J/point, and daily irradiation from the first until the last day of RT. FITOPROT was gargled twice a day. All patients underwent a preventive oral care program throughout the study. OM degree, salivary concentration of nitrite, and inflammatory (IL-1, TNFα, IL-6, IL-8, and IL-12p70), and anti-inflammatory (IL-10) cytokines were assessed at baseline, and at the 7th, 14th, 21st, and 30th RT sessions. RESULTS There were no differences in the OM degree between groups, but the RT dose significantly affected the OM. The RT significantly affected the salivary nitrite, TNFα, IL-1β, and IL-10 concentrations. CONCLUSION FITOPROT associated with PBM showed limited effects on preventing the incidence of severe OM compared to PBM alone. However, FITOPROT + PBM may be associated with nitrite and cytokine balance, which may contribute to the occurrence of fewer cases of severe OM. TRIAL REGISTRATION Brazilian Clinical Trials database (ReBEC; RBR-9vddmr), registered UTN code: U1111-1193-2066, registered in August 8th, 2017.
Collapse
Affiliation(s)
- Carlos Henrique Pereira
- Araujo Jorge Cancer Hospital, R. 239, 206 - Setor Universitário, Goiânia, Goiás, CEP 74175-120, Brazil
| | - Allisson Filipe Lopes Martins
- Department of Oral Diagnosis, School of Dentistry, Universidade Evangélica de Goiás, Dentistry School, Anápolis, Goiás, CEP 75083-515, Brazil
| | - Marília Oliveira Morais
- Araujo Jorge Cancer Hospital, R. 239, 206 - Setor Universitário, Goiânia, Goiás, CEP 74175-120, Brazil
| | - Sebastião Silvério de Sousa-Neto
- Laboratory of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Avenida Universitária Esquina Com 1ª Avenida, S/N. Setor Universitário, Goiânia, Goiás, CEP 74605-220, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Rodovia R2, N. 3.061, Campus Samambaia, Goiânia, Goiás, CEP 74605.170, Brazil
| | - Diego Antonio Costa Arantes
- Laboratory of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Avenida Universitária Esquina Com 1ª Avenida, S/N. Setor Universitário, Goiânia, Goiás, CEP 74605-220, Brazil
| | - Victor Hugo Lopes De Oliveira Moreira
- Laboratory of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Avenida Universitária Esquina Com 1ª Avenida, S/N. Setor Universitário, Goiânia, Goiás, CEP 74605-220, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology, Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Rodovia R2, N. 3.061, Campus Samambaia, Goiânia, Goiás, CEP 74605.170, Brazil
| | - Nilceana Maya Aires Freitas
- Department of Radiotherapy, Araujo Jorge Cancer Hospital, R. 239, 206-Setor Universitário, Goiânia, Goiás, CEP 74175-120, Brazil
| | - Cláudio Rodrigues Leles
- Department of Prevention and Oral Rehabilitation, School of Dentistry, Universidade Federal de Goiás, Avenida Universitária Esquina Com 1ª Avenida, S/N. Setor Universitário, Goiânia, Goiás, CEP 74605-220, Brazil
| | - Elismauro Francisco Mendonça
- Laboratory of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Avenida Universitária Esquina Com 1ª Avenida, S/N. Setor Universitário, Goiânia, Goiás, CEP 74605-220, Brazil.
| |
Collapse
|
26
|
Yan L, Liu H, Wang Y, Zhang L, Ma C, Abd El-Aty AM. Fabrication of polysaccharide-coated oleanolic acid-curcumin-coassembled nanoparticles (OA/Cur NPs): Enhancement of colloidal stability and water solubility. Food Chem 2024; 451:139482. [PMID: 38688096 DOI: 10.1016/j.foodchem.2024.139482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Natural terpenoid carriers, such as oleanolic acid (OA), can enhance the water solubility and stability of hydrophobic compounds such as curcumin (Cur). However, improving the colloidal stability of nanoparticle emulsions and resolving the redispersion problem of freeze-dried nanoparticle powders remain significant challenges. In this study, we fabricated coassembled oleanolic acid-curcumin nanoparticles (OA/Cur NPs) and applied a polysaccharide surface coating method to improve their colloidal stability and water solubility. The results showed that the optimal ratio of Cur/OA for preparing OA/Cur NPs was 4:10, resulting in a high encapsulation efficiency (EE) of Cur (75.2%). Additionally, TEM, contact angle tests, Turbiscan TOWER optical stability analysis of the polysaccharide-coated OA/Cur NP emulsions and redispersion tests of their lyophilized powders verified the advantages of carboxymethyl chitosan/β-cyclodextrin (CMC/β-CD) coating over other polysaccharides. This study indicated that polysaccharide coating is an effective method for enhancing the colloidal stability, water solubility, and redispersibility of OA/Cur NPs.
Collapse
Affiliation(s)
- Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Han Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhui Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| |
Collapse
|
27
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
28
|
Jose AD, Foo KL, Hu G, Ngar L, Ryda B, Jaiswal J, Wu Z, Agarwal P, Thakur SS. Design and evaluation of curcumin-loaded poloxamer hydrogels as injectable depot formulations. Eur J Pharm Biopharm 2024; 201:114372. [PMID: 38897552 DOI: 10.1016/j.ejpb.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Poloxamer hydrogels are of interest as injectable depot delivery systems. However, their use for delivering hydrophobic drugs, such as curcumin, is limited due to poor loading capacity. Here, we evaluated the influence of incorporating hydrophobic medium chain triglycerides (MCT) or amphiphilic polyethylene glycol 400 (PEG400) on the physicochemical properties, drug loading, and in vitro compatibility of a curcumin-loaded poloxamer hydrogel. Poloxamer 407 and 188 hydrogel formulations (16:6 w/w) were prepared and MCT and PEG400 (saturated with curcumin) were added to these systems, either alone or in combination, up to a 10 % w/w additive solvent load. Formulation viscoelasticity, gelation behaviour, injectability, morphology and release profiles were assessed. The cytocompatibility of the formulations was also assessed on dermal fibroblasts (HDFn). Both additives increased curcumin loading into the formulation. Addition of MCT to the hydrogel significantly increased its gelation speed, while PEG400 had a less profound impact. Both additive solvents increased the force required to inject the formulation. PEG400 containing systems were single phase, whereas MCT addition created emulsion systems. All formulations released ∼20-30 % of their loaded curcumin in a sustained fashion over 24 h. The modified hydrogel systems showed good biocompatibility on cells when administering up to ∼100-150 µM curcumin into the culture. This study addresses a key limitation in loading hydrophobic drugs into hydrogels and provides a strategy to enhance drug loading and performance of hydrogels by integrating additives such as MCT and PEG400 into the systems.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kea Leigh Foo
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Grace Hu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Linda Ngar
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Bovinae Ryda
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
30
|
Wu Y, Fan Q, Zhou J, Hu H, Liao Z, Tang X, Xu M, Yang S, Lai J, Wan S, Wu J. Biomimetic platelet-like nanoparticles enhance targeted hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2024; 240:113973. [PMID: 38795584 DOI: 10.1016/j.colsurfb.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Curcumin (CUR) is a promising natural product for hepatocellular carcinoma (HCC) therapy. However, its clinical application has been limited by some issues such as rapid clearance and inadequate tumor accumulation. To address these drawbacks, we developed platelet membrane-coated CUR-loaded PLGA nanoparticles (PCPNPs). In this work, due to the bioinspired strategy, the PCPNPs exhibited immune evasion, prolonged circulation, and improved accumulation at tumor sites compared to the traditional CUR formulation. The superior tumor targeting of PCPNPs was likely due to the interactions between platelet P-selectin and tumoral CD44. Furthermore, both in vitro and in vivo assays revealed that the PCPNPs showed outstanding anticancer efficacy without obvious toxicity. Therefore, PCPNPs represent a biosafe and promising anti-tumor strategy, overcoming the limitations associated with CUR. These findings not only contribute to the advancement of natural compound nano-formulation but also open new avenues for targeted cancer treatment.
Collapse
Affiliation(s)
- Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqin Tang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shuo Yang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Lai
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
31
|
Ishtiaq M, Manzoor H, Khan IU, Asghar S, Irfan M, Albekairi NA, Alshammari A, Alqahtani AF, Alotaibi S, Munir R, Shah PA, Hussain L, Saleem MA, Razzaq FA, Khalid SH. Curcumin-loaded soluplus® based ternary solid dispersions with enhanced solubility, dissolution and antibacterial, antioxidant, anti-inflammatory activities. Heliyon 2024; 10:e34636. [PMID: 39130422 PMCID: PMC11315136 DOI: 10.1016/j.heliyon.2024.e34636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Amorphous solid dispersion (ASD) has emerged to be an outstanding strategy among multiple options available for improving solubility and consequently biological activity. Interestingly several binary SD systems continue to exhibit insufficient solubility over time. Therefore, the goal of current research was to design ternary amorphous solid dispersions (ASDs) of hydrophobic model drug curcumin (CUR) to enhance the solubility and dissolution rate in turn, presenting enhanced anti-bacterial, antioxidant and anti-inflammatory activity. For this purpose several ternary solid dispersions (TSDs) consisting of Soluplus®, Syloid® XDP 3150, Syloid® 244 and Poloxamer® 188 in combination with HPMC E5 (binary carrier) were prepared using solvent evaporation method. Both solubility and dissolution testing of prepared solid dispersion were performed to determine the increase in solubility and dissolution. Solid state investigation was carried out utilizing infrared spectroscopy, also known as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM),Differential scanning calorimetry (DSC) and X-ray diffraction (XRD).Optimized formulations were also tested for their biological effectiveness including anti-bacterial, anti-oxidant and anti-inflammatory activity. Amid all Ternary formulations F3 entailing 20 % soluplus® remarkably improved the solubility (186 μg/ml ± 3.95) and consequently dissolution (91 % ± 3.89 %) of curcumin by 3100 and 9 fold respectively. These finding were also supported by FTIR, SEM, XRD and DSC. In-vitro antibacterial investigation of F3 also demonstrated significant improvement in antibacterial activity against both gram positive (Staphylococcus aureus, Bacillus cereus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Among all the tested strains Staphylococcus aureus was found to be most susceptible with a zone of inhibition of 24 mm ± 2.87. Antioxidant activity of F3 was also notably enhanced (93 % ± 5.30) in contrast to CUR (69 % ± 4.79). In vitro anti-inflammatory assessment also exhibited that F3 markedly protected BSA (bovine serum albumin) from denaturation with percent BSA inhibition of 80 % ± 3.16 in comparison to CUR (49 % ± 2.91). Hence, F3 could be an effective solid dispersion system for the delivery of model hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hina Manzoor
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- College of Pharmacy, Freie Universitaet Berlin, Germany
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman F. Alqahtani
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior, Kingdom of Saudi Arabia
| | - Saad Alotaibi
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior, Kingdom of Saudi Arabia
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Pervaiz A. Shah
- University College of Pharmacy, University of the Punjab, Lahore, 54590, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Abubakar Saleem
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- Unison Chemical Works, Post Office Araian 15 Km Raiwind Road, Lahore, Pakistan
| | - Fizza Abdul Razzaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
32
|
Mohammadi A, Bagheri F, Abutalebi Y, Aghaei A, Danafar H. Platinum nanoparticles-embedded single-walled carbon nanotubes as a new carrier for curcumin delivery and investigating its anticancer effect on cell line 4T1. Heliyon 2024; 10:e33703. [PMID: 39027555 PMCID: PMC11255493 DOI: 10.1016/j.heliyon.2024.e33703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer, a prevalent disease across various societies, presents a significant challenge in treatment research. Studies show that combination therapies are one of the methods that can help in the effective treatment of cancer. Chemotherapy and radiation therapy are among the main cancer treatments and in this project, for combined chemoradiotherapy treatment, carbon nanotubes were used as improved carriers of chemotherapy in tumors, as well as a substrate for the preparation of radiation sensitizers for local radiation therapy. Following the synthesis of CNT-Platinum-Curcumin nanoparticles (CNT-Pt-CUR), a series of analyses were conducted to verify the successful production of these nanoparticles. Techniques such as Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) were employed. The characterization data revealed a spherical shape Pt nanoparticle morphology with an 8.5 nm diameter on rod-shape CNT, as observed through TEM. Furthermore, FTIR analysis confirmed the successful loaded of the drug into the nanoparticles, highlighting the potential of this approach in cancer treatment. Then, hemolysis and (3(-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests on normal cells were used to assess the biocompatibility of CNT-Pt-CUR nanoparticles. It also explored the anticancer efficacy of these nanoparticles at varying concentrations against cancer cells, both with and without exposure to X-rays. The research confirmed the successful synthesis of these nanoparticles and demonstrated their potential impact on cell viability. Specifically, breast cancer cells exhibited heightened susceptibility to toxicity when exposed to nanoparticles and X-rays. Further analysis revealed that the toxicity of nanoparticles is dose-dependent, and modifying the surface of carbon nanotube (CNT) nanoparticles with CUR significantly reduced blood toxicity. Interestingly, nanoparticle toxicity was significantly amplified in the presence of X-rays, suggesting mechanisms such as DNA damage and increased reactive oxygen species (ROS) levels within cells.
Collapse
Affiliation(s)
- Ali Mohammadi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fariba Bagheri
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasamin Abutalebi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Afsoon Aghaei
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
33
|
Yu B, Kwak K, Lewandowski RJ, Kim DH. Integration of Ethanol and the Immune Modulator Curcumin for Immunoablation of Hepatocellular Carcinoma. J Vasc Interv Radiol 2024; 35:1033-1042.e11. [PMID: 38513753 DOI: 10.1016/j.jvir.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE To investigate immuno-ethanol ablation using an ethanol and immune adjuvant formulation as a potent immunoablation approach that can achieve an enhanced anticancer effect in the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Ethanol concentration- and exposure time-dependent cellular responses were investigated. Curcumin was combined with ethanol as an immunoablation agent. Cellular uptake of curcumin, cancer cell killing, and inflammatory markers of ethanol-curcumin treatment were characterized. To evaluate the potential in vivo anticancer immunity of ethanol-curcumin treatment, each right and left lobe of rat liver was concurrently inoculated with N1S1 HCC cells and a mixture of treated N1S1 cells (ethanol only or ethanol-curcumin) in Sprague Dawley rats (each group: 5 rats; control: nontreated N1S1 cells). Tumor growth and immune response were characterized with 7T magnetic resonance (MR) imaging, flow cytometry analysis, and immunohistology. RESULTS An optimized ethanol-curcumin (10% ethanol and 0.5% weight/volume (w/v) curcumin solution) treatment contributed to an enhanced cellular uptake of curcumin, increased cancer cell killing, and decreased inflammatory reaction. Ethanol-curcumin-treated N1S1 cell implantation in the rat liver demonstrated N1S1 HCC tumor rejection. The secondary tumor growth by nontreated N1S1 cell inoculation was significantly suppressed at the same time. Activated anticancer immunity was evidenced by significantly increased CD8+ T cell infiltration (3.5-fold) and CD8+-to-regulatory T cell ratio (4.5-fold) in the experimental group compared with those in the control group. CONCLUSIONS Enhanced anticancer effect of immuno-ethanol ablation could be achieved with ethanol-curcumin agent. The results underscore the importance of optimized immunoablation therapeutic procedures for enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Bo Yu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kijung Kwak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert J Lewandowski
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Li J, Wang X, Xue L, He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024; 10:e33103. [PMID: 39022084 PMCID: PMC11253540 DOI: 10.1016/j.heliyon.2024.e33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Curcumin, a phenolic compound extracted from turmeric rhizomes, exhibits antitumour effects in preclinical models of tumours. However, its mechanism of action in prostate cancer remains unclear. Exploring the molecular mechanisms of curcumin in prostate cancer based on network pharmacology and molecular docking provides a new theoretical basis for prostate cancer treatment. Method Using tools such as PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction, we obtained information on curcumin-related targets. We comprehensively collected prostate cancer-related targets from several databases, including GeneCards, CTD, DisGeNET, OMIM, and PharmGKB. Cross-cutting drug-disease targets were then derived by screening using the Venny 2.1.0 tool. Subsequently, we used the DAVID platform to perform in-depth GO and KEGG enrichment analyses of the drug-disease-shared targets. To construct a PPI network map of the cross-targets and screen the 10 core targets, we combined the STRING database and Cytoscape 3.7.2. Molecular docking experiments were performed using AutoDockTools 1.5.7 software. Finally, we used several databases such as GEPIA, HPA, cBioPortal, and TIMER to further analyse the screened core targets in detail. Result We identified 307 key targets of curcumin in cancer treatment. After GO functional enrichment analysis, we obtained 1119 relevant entries, including 782 biological progression (BP) entries, 112 cellular component (CC) entries, and 225 molecular function (MF) entries. In addition, KEGG pathway enrichment analysis revealed 126 signalling pathways, which were mainly involved in the cancer pathway, such as lipid and atherosclerosis pathway, PI3K-Akt signal pathway, MAPK signal pathway, Ras signal pathways, and chemical carcinogenesis-reactive oxygen species. By applying Cytoscape 3.7.2 software, we identified SRC, PIK3R1, STAT3, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1 as core targets. Molecular docking experiments showed that the binding energies of curcumin to these core targets were all below -1.85 kJ mol-1, which fully demonstrated that curcumin could spontaneously bind to these core targets. Finally, these results were validated at multiple levels, including mRNA expression, protein expression, and immune infiltration. Conclusion Through in-depth network pharmacology and molecular docking studies, we have found that curcumin may have anticancer potential by upregulating the expression of PIK3R1 and STAT3, and downregulating the binding ability of molecules such as SRC, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1. In addition, curcumin may interfere with the cyclic process of prostate cancer cells by inhibiting key signalling pathways such as the PI3K-Akt signalling pathway, MAPK signalling pathway, and Ras, thereby inhibiting their growth. This study not only reveals the potential molecular mechanism of curcumin in the treatment of prostate cancer but also provides an important theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Xi'an Jiaotong University, China
- Department of Urology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Xiong Wang
- Department of Pharmacology, Ankang Maternity and Child Health Care Hospital, Ankang, 725000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
35
|
Li J, Feng S, Wang X, Zhang B, He Q. Exploring the Targets and Molecular Mechanisms of Curcumin for the Treatment of Bladder Cancer Based on Network Pharmacology, Molecular Docking and Molecular Dynamics. Mol Biotechnol 2024:10.1007/s12033-024-01190-x. [PMID: 38822913 DOI: 10.1007/s12033-024-01190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Curcumin, a phenolic compound derived from turmeric, has demonstrated anti-tumor properties in preclinical models of various cancers. However, the exact mechanism of curcumin in treating bladder cancer remains unclear. This study aimed to elucidate the therapeutic targets and molecular mechanisms of curcumin in the treatment of BC through an integrated approach of network pharmacology, molecular docking, and molecular dynamics simulations. PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction were utilized to acquire targets associated with curcumin, while GeneCards, CTD, DisGeNET, OMIM, and PharmGKB databases were utilized to obtain targets related to bladder cancer. The drug-disease interaction targets were obtained using Venny 2.1.0, and GO and KEGG enrichment analyses were then conducted with the DAVID tool. We constructed a protein-protein interaction (PPI) network and identified tenkey targets. In conclusion, AutoDock Tools 1.5.7 was utilized to conduct molecular docking simulations, followed by additional analysis of the central targets through the GEPIA, HPA, cBioPortal, and TIMER databases. A total of 305 potential anticancer targets of curcumin were obtained. The analysis of GO functional enrichment resulted in a total of 1105 terms, including 786 terms related to biological processes (BP), 105 terms related to cellular components (CC), and 214 terms related to molecular functions (MF). In addition, KEGG pathway enrichment analysis identified 170 relevant signaling pathways. Treating bladder cancer could potentially involve inhibiting pathways like the PI3K-Akt signaling pathway, MAPK signaling pathway, EGFR tyrosine kinase inhibitor resistance, and IL-17 signaling pathway. Activating TNF, ALB, CASP3, and ESR1 while inhibiting AKT1, EGFR, STAT3, BCL2, SRC, and HSP90AA1 can also hinder the proliferation of bladder tumor cells. According to the results of molecular docking, curcumin binds to these central targets in a spontaneous manner, exhibiting binding energies lower than - 1.631 kJ/mol. These findings were further validated at the transcriptional, translational and immune infiltration levels. By utilizing network pharmacology and molecular docking techniques, it was discovered that curcumin possesses diverse effects on multiple targets and pathways for treating bladder cancer. It has the potential to impede the growth of bladder tumor cells by suppressing various pathways including the PI3K-Akt and MAPK signaling pathways, as well as pathways associated with EGFR tyrosine kinase inhibitor resistance and the IL-17 signaling pathway. Curcumin could potentially disrupt the cell cycle advancement in bladder cancer cells by increasing the expression of TNF, ALB, CASP3, and ESR1 while decreasing AKT1, EGFR, STAT3, BCL2, SRC, HSP90AA1, and other targeted genes. These findings reveal the possible molecular pathways through which curcumin exerts its anticancer effects in bladder cancer, and this novel research strategy not only provides an important basis for an in-depth understanding of the anticancer mechanism of curcumin, but also offers new potential drugs and targets for the clinical treatment of bladder cancer. Therefore, this study is of great scientific significance and practical application value for promoting the development of bladder cancer therapeutic field. This finding provides strong support for the development of novel, safe and effective drugs for bladder cancer treatment.
Collapse
Affiliation(s)
- Jun Li
- Ankang Central Hospital, Ankang, 725000, Shaanxi, China
| | - Shujie Feng
- Ankang Central Hospital, Ankang, 725000, Shaanxi, China
| | - Xiong Wang
- The Ankang Hospital for Maternity and Child Health, Ankang, 725000, Shaanxi, China
| | - Bingmei Zhang
- Ankang Central Hospital, Ankang, 725000, Shaanxi, China
| | - Qingmin He
- Ankang Central Hospital, Ankang, 725000, Shaanxi, China.
| |
Collapse
|
36
|
Jang GH, Kim YM, Kim DH, Shin JW, Yoon SY, Bae JW, Choi JH, Yoon MS. A chitosan/alginate coated nano-liposome to improve intestinal absorption of curcumin for oral administration. Food Sci Biotechnol 2024; 33:1707-1714. [PMID: 38623436 PMCID: PMC11016035 DOI: 10.1007/s10068-023-01461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Attempts to improve low absorption and rapid metabolic conversion of curcumin were made by developing curcumin-loaded bilayer nanoliposomes coated with chitosan and alginate for intestinal-specific drug delivery. A curcumin-loaded nano-liposome was prepared with optimized formulations with phosphatidylcholine, curcumin, chitosan, and alginate. The particle size of the optimized formulation was approximately 400 nm, and the encapsulation efficiency was more than 99%. In the in vitro release study, curcumin release from the curcumin-loaded nanoliposome with double layers of chitosan/alginate (CNL-CH/AL) was suppressed in the simulated gastric fluid (SGF, pH 1.2) and enhanced in the simulated intestinal fluid (SIF, pH 6.8). In the in vivo pharmacokinetic study in rats, the CNL-CH/AL-treated group showed a prolonged absorption pattern of curcumin and the area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) was improved 109-fold compared to the control group treated with a curcumin solution without a nanocarrier.
Collapse
Affiliation(s)
- Gi-Hyun Jang
- Binotec Co., Ltd., 155 Deulan-Ro, Suseong-Gu, Daegu, 42151 Korea
| | - Yu-Mi Kim
- Binotec Co., Ltd., 155 Deulan-Ro, Suseong-Gu, Daegu, 42151 Korea
| | - Do-Hyeon Kim
- Binotec Co., Ltd., 155 Deulan-Ro, Suseong-Gu, Daegu, 42151 Korea
| | - Ji-Won Shin
- Binotec Co., Ltd., 155 Deulan-Ro, Suseong-Gu, Daegu, 42151 Korea
| | - Seo Young Yoon
- Department of Pharmaceutical Engineering, Hoseo University, Asan, 31499 Chungnam Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601 Korea
| | - Jin-Hyun Choi
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, 41566 Korea
| | - Myeong Sik Yoon
- Department of Pharmaceutical Engineering, Hoseo University, Asan, 31499 Chungnam Korea
- The Research Institute for Basic Sciences, Hoseo University, Asan, 31499, Chungnam Korea
| |
Collapse
|
37
|
Maulina T, Purnomo YY, Khamila N, Garna D, Sjamsudin E, Cahyanto A. Analgesic Potential Comparison Between Piperine-Combined Curcumin Patch and Non-Piperine Curcumin Patch: A Pragmatic Trial on Post-Cleft Lip/Palate Surgery Pediatric Patients. J Pain Res 2024; 17:1903-1915. [PMID: 38812820 PMCID: PMC11135569 DOI: 10.2147/jpr.s463159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Purpose Despite its well-acknowledged analgesic potential, curcumin's low bioavailability has been recognized. Piperine, a substance naturally contained in pepper, has been known for its effect on increasing curcumin bioavailability. To investigate the analgesic potential of curcumin and piperine addition to curcumin patch used as adjuvant therapy in the management of acute postoperative orofacial pain. Patients and Methods This pragmatic trial recruited 75 patients that underwent oromaxillofacial surgery at Unpad Dental Hospital, Bandung, Indonesia. Research participants were randomly assigned to three different groups: the first group that did not receive any intervention other than the post-operative standard treatment (POST), the second group that received POST and non-piperine curcumin patch, and the third group that received POST and piperine-combined curcumin patch. Participants' pain intensity was evaluated by using the face, leg, activity, cry, and consolability (FLACC) pain scale and salivary prostaglandin-E2 (PGE2) level for two-time points, which were eight hours apart. All data were gathered and analyzed to compare the within and between-group differences. Results Within groups comparison of the FLACC scores for two evaluation points showed significant differences for all groups (p < 0.01). For salivary PGE2 analysis, a comparison of the non-piperine group to the piperine group also showed significant results. Yet, when all three groups were compared, regardless of the differences, the results were not statistically significant. Conclusion Despite of the proven efficacy of curcumin patch, the addition of piperine to the curcumin patch in the current study did not provide any significant effects. Further investigation is of importance.
Collapse
Affiliation(s)
- Tantry Maulina
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
- Dentistry Department, Radboud University, Nijmegen, the Netherlands
| | | | - Nadya Khamila
- Oral Surgery and Maxillofacial Specialist Program, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Devy Garna
- Periodontology Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Endang Sjamsudin
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Radha R, Paul V, Anjum S, Bouakaz A, Pitt WG, Husseini GA. Enhancing Curcumin's therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery. Sci Rep 2024; 14:10499. [PMID: 38714740 PMCID: PMC11076529 DOI: 10.1038/s41598-024-61278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.
Collapse
Affiliation(s)
- Remya Radha
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
- Material Science and Engineering PhD Program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Shabana Anjum
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84604, USA
| | - Ghaleb A Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE.
- Material Science and Engineering PhD Program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE.
| |
Collapse
|
39
|
Patil R, Telang G, Aswar U, Vyas N. Comparative analyses of anti-inflammatory effects of Resveratrol, Pterostilbene and Curcumin: in-silico and in-vitro evidences. In Silico Pharmacol 2024; 12:38. [PMID: 38706886 PMCID: PMC11065812 DOI: 10.1007/s40203-024-00211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
Inflammation is an adaptive response that involves activation, and recruitment of cells of innate and adaptive immune cells for restoring homeostasis. To safeguard the host from the threat of inflammatory agents, microbial invasion, or damage, the immune system activates the transcription factor NF-κB and produces cytokines such as TNF-α, IL- 6, IL-1β, and α. Sirtuin 1 (SIRT1) controls the increased amounts of proinflammatory cytokines, which in turn controls inflammation. Three phytoconstituents resveratrol (RES), pterostilbene (PTE), and curcumin (CUR) which are SIRT1- activators and that have marked anti-inflammatory effects (in-vivo), were chosen for the current study. These compounds were compared for their anti-inflammatory potential by in-silico docking studies for IL-6, TNF-α, NF-κB, and SIRT1 and in-vitro THP-1 cell line studies for IL-6, TNF-α. PTE was found to be more effective than RES and CUR in lowering the concentrations of IL-6 and TNF-α in THP-1 cell line studies, and it also showed a favorable docking profile with cytokines and SIRT1. Thus, PTE appears to be a better choice for further research and development as a drug or functional food supplement with the ability to reduce inflammation in metabolic disorders. Graphical abstract Schematic representation of in-silico and in-vitro analysis of Resveratrol, Pterostilbene, and Curcumin.
Collapse
Affiliation(s)
- Rashmi Patil
- Department of Pharmacology Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, Maharashtra 411038 India
| | - Gaurang Telang
- Logical Life Science Pvt. Ltd, Vadgaon Khurd, Pune, Maharashtra 411041 India
| | - Urmila Aswar
- Department of Pharmacology Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, Maharashtra 411038 India
| | - Nishant Vyas
- Logical Life Science Pvt. Ltd, Vadgaon Khurd, Pune, Maharashtra 411041 India
| |
Collapse
|
40
|
Iqbal MA, Gohar S, Zhu C, Mayakrishnan G, Kim IS. Eggshell membrane as a novel and green platform for the preparation of highly efficient and reversible curcumin-based colorimetric sensor for the monitoring of chicken freshness. Int J Biol Macromol 2024; 266:131089. [PMID: 38521340 DOI: 10.1016/j.ijbiomac.2024.131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Herein, for the very first time, we report a paper-like biomass, eggshell membrane (ESM), as a suitable platform for the fabrication of a colorimetric sensor (E-Cot). Green ethanolic extract, curcumin (CUR), was used as a sensing material to coat with the ESM. The present E-Cot effectively changed its color (yellow to red) in the real-time monitoring for chicken spoilage. The E-Cot exhibits barrier properties due to its inherent semi-permeability characteristics. Interestingly, the E-Cot showed a significant change in total color difference value (ΔE, 0 days - 0.0-39.6, after 1 day - 39.6-42.1, after 2 days - 42.1-53.6, after 3 days- 53.6-60.1, and after 4 days - 60.1-66.3, detectable by the naked eye) in the real-time monitoring for chicken freshness. In addition, the present E-Cot smart colorimetric sensor is reversible with a change in pH, and the sensor can be reused. Further, the hydrophobic nature of the E-Cot was confirmed by water contact angle analysis (WCA, contact angle of 101.21 ± 8.39). Good antibacterial, barrier, and optical properties of the present E-Cot were also found. Owing to the advantages such as green, efficient, cost-effective, biodegradable, reusable, sustainable, and simple preparation, we believe that the present E-Cot would be a more attractive candidate.
Collapse
Affiliation(s)
- Muhammad Asim Iqbal
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan; Department of Polymer Engineering, National Textile University, Karachi Campus, 74900 Karachi, Pakistan; School of Engineering and Technology, National Textile University, 37610 Faisalabad, Pakistan
| | - Sabeen Gohar
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Chunhong Zhu
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan; Division of Molecules and Polymers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
41
|
Kim YJ, Yong HI, Chun YG, Kim BK, Lee MH. Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chem 2024; 436:137639. [PMID: 37890346 DOI: 10.1016/j.foodchem.2023.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
42
|
Lapteva M, Faro Barros J, Kalia YN. Cutaneous Delivery and Biodistribution of Cannabidiol in Human Skin after Topical Application of Colloidal Formulations. Pharmaceutics 2024; 16:202. [PMID: 38399256 PMCID: PMC10892191 DOI: 10.3390/pharmaceutics16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate the cutaneous delivery of cannabidiol (CBD) from aqueous formulations developed for the targeted local treatment of dermatological conditions. CBD was formulated using a proprietary colloidal drug delivery system (VESIsorb®) into an aqueous colloidal solution at 2% (ACS 2%) and two colloidal gels (CG 1% and CG 2%, which contained 1% and 2% CBD, respectively). Two basic formulations containing CBD (5% in propylene glycol (PG 5%) and a 6.6% oil solution (OS 6.6%)) and two marketed CBD products (RP1 and RP2, containing 1% CBD) were used as comparators. Cutaneous delivery and cutaneous biodistribution experiments were performed using human abdominal skin (500-700 µm) under infinite- and finite-dose conditions with 0.5% Tween 80 in the PBS receiver phase. The quantification of CBD in the skin samples was performed using a validated UHPLC-MS/MS method and an internal standard (CBD-d3). The cutaneous deposition of CBD under finite-dose conditions demonstrated the superiority of CG 1%, CG 2%, and ACS 2% over the marketed products; CG 1% had the highest delivery efficiency (5.25%). Cutaneous biodistribution studies showed the superiority of the colloidal systems in delivering CBD to the viable epidermis, and the upper and lower papillary dermis, which are the target sites for the treatment of several dermatological conditions.
Collapse
Affiliation(s)
- Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Jonathan Faro Barros
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland (J.F.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
43
|
Asif M, Imran M, Ahmad MH, Khan MK, Hailu GG. Physicochemical and Functional Properties of Moringa Seed Protein Treated with Ultrasound. ACS OMEGA 2024; 9:4102-4110. [PMID: 38284023 PMCID: PMC10809315 DOI: 10.1021/acsomega.3c09323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
Functional and structural properties of Moringa protein concentrate (MPC), obtained from defatted Moringa oleifera seed, were investigated after treating it with an ultrasonic technique. For this purpose, dried M. oleifera seed powder was defatted and subjected to a simple protein precipitation method to generate a MPC with 73.2% protein contents. Then, a Box-Behnken design was applied to optimize the sonication treatment of MPC where ultrasound amplitude (20-80%), treatment time (5-25 min), and solute-to-solvent ratio (0.1-0.3 g/mL) were studied as factors that influence the protein solubility (PS), emulsion capacity (EC), and foaming capacity (FC) of MPC. The optimal conditions were amplitude of 58%, time of 18 min, and solute to solvent ratio of 0.18 g/mL. At these conditions, PS, EC, and FC were increased to 42, 33, and 73%, respectively, in comparison to untreated one. The structural modification by ultrasound was further confirmed by using Fourier transform infrared spectroscopy which illustrated the MPC modification through the changes in the peak width of amide-I band. Similarly, the intrinsic fluorescence spectral signature also showed a significant increase in the amino residues of MPC. In conclusion, the exposure of hydrophilic groups and the alteration of secondary and tertiary structures induced by ultrasonic treatment improved the functional characteristics of MPC.
Collapse
Affiliation(s)
- Muhammad
Naveed Asif
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Haseeb Ahmad
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Kamran Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | | |
Collapse
|
44
|
Schmidt M, Huber V, Touraud D, Kunz W. Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours. Molecules 2024; 29:294. [PMID: 38257207 PMCID: PMC10820666 DOI: 10.3390/molecules29020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Natural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV-Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donor abilities, like γ- and δ-lactones. The special case of DMSO was also examined, as the highest curcumin solubility was observed with it. Possible specific interactions of selected aroma compounds (citral and δ-hexalactone) with curcumin were investigated via 1H NMR and NOESY experiments. The tested flavours and fragrances were evaluated regarding their potential as green alternative solvents.
Collapse
Affiliation(s)
- Michael Schmidt
- Institute of Materials Resource Management, University of Augsburg, Am Technologiezentrum 8, D-86159 Augsburg, Germany
| | - Verena Huber
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany; (V.H.); (D.T.)
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany; (V.H.); (D.T.)
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany; (V.H.); (D.T.)
| |
Collapse
|
45
|
Sun Q, Yuan T, Yang G, Guo D, Sha L, Yang R. Chitosan-graft-poly(lactic acid)/CD-MOFs degradable composite microspheres for sustained release of curcumin. Int J Biol Macromol 2023; 253:127519. [PMID: 37866573 DOI: 10.1016/j.ijbiomac.2023.127519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The solubility of cyclodextrin metal-organic frameworks (CD-MOFs) in aqueous media making it not suitable as sustained-release drug carrier. Here, curcumin-loaded CD-MOFs (CD-MOFs-Cur) was embedded in chitosan-graft-poly(lactic acid) (CS-LA) via a solid-in-oil-in-oil (s/o/o) emulsifying solvent evaporation method forming the sustained-release composite microspheres. At CS-LA concentration of 20 mg/mL, the composite microspheres showed good sphericity. The average particle size of CS-LA/CD-MOFs-Cur (2:1), CS-LA/CD-MOFs-Cur (4:1) and CS-LA/CD-MOFs-Cur (6:1) composite microspheres was about 9.3, 12.3 and 13.5 μm, respectively. The above composite microspheres exhibited various degradation rates and curcumin release rates. Treating in HCl solution (pH 1.2) for 120 min, the average particle size of above microspheres reduced 28.19 %, 24.34 % and 6.19 %, and curcumin released 86.23 %, 78.37 % and 52.57 %, respectively. Treating in PBS (pH 7.4) for 12 h, the average particle size of above microspheres reduced 30.56 %, 26.56 % and 10.66 %, and curcumin released 68.54 %, 54.32 % and 31.25 %, respectively. Moreover, the composite microspheres had a favorable cytocompatibility, with cell viability of higher than 90 %. These composite microspheres open novel opportunity for sustained drug release of CD-MOFs.
Collapse
Affiliation(s)
- Qianyu Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianzhong Yuan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Gang Yang
- Winbon Schoeller New Materials Co., Ltd., Quzhou 324400, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Rendang Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
46
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
47
|
Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, Chaubal TV, Bapat PR, Abullais SS, Wahab S, Kesharwani P. Current appraises of therapeutic applications of nanocurcumin: A novel drug delivery approach for biomaterials in dentistry. ENVIRONMENTAL RESEARCH 2023; 238:116971. [PMID: 37717805 DOI: 10.1016/j.envres.2023.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
Collapse
Affiliation(s)
- Ranjeet A Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Sumit V Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Aarti S Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Ho Jan Yang
- Oral Health Division, Ministry of Health, Malaysia
| | - Suyog Dharmadhikari
- D Y Patil Deemed to Be University School of Dentistry, Nerul, Navi-mumbai, 400706, India
| | - Anshad Mohamed Abdulla
- Department of Pediatric dentistry and Orthodontic Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Tanay V Chaubal
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
48
|
Calovi M, Rossi S. Eco-Friendly Multilayer Coating Harnessing the Functional Features of Curcuma-Based Pigment and Rice Bran Wax as a Hydrophobic Filler. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7086. [PMID: 38005016 PMCID: PMC10671901 DOI: 10.3390/ma16227086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
This work aims to highlight the multiple features shown by curcuma-based pigment and rice bran wax, which can be selectively employed as bio-based additives for the realization of multilayer wood coatings with multiple functionalities, harnessing the capabilities of the two environmentally friendly fillers, in line with current environmental sustainability trends. The role of the two green materials on the morphology of the composite layers was examined through observations employing scanning electron and optical microscopy, revealing a strong alteration of the film's appearance, both its color and reflectivity. Additionally, their influence on the paint's resilience was assessed by exposing the samples to UV-B radiation and consecutive thermal shocks. The coating displayed a clear and uniform change in color because of substantial curcuma powder photo-degradation but it remained exceptionally stable when subjected to thermal stresses. Moreover, the protective properties of the coatings were evaluated by conducting liquid resistance tests and water uptake tests, while the hardness and the abrasion resistance of the coatings were assessed to evaluate the effect of the additives on the mechanical properties of the coatings. In conclusion, this study showcases the promising joint action of curcuma-based pigment and rice bran wax in multilayer coatings. This combination offers vibrant yellow tones and an appealing appearance to the paint, enhances the surface's water-repellent properties, and improves the mechanical resistance of the coatings.
Collapse
Affiliation(s)
- Massimo Calovi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefano Rossi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
49
|
Aloi E, Tone CM, Barberi RC, Ciuchi F, Bartucci R. Effects of curcumin in the interaction with cardiolipin-containg lipid monolayers and bilayers. Biophys Chem 2023; 301:107082. [PMID: 37544082 DOI: 10.1016/j.bpc.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Caterina M Tone
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Riccardo C Barberi
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Federica Ciuchi
- CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
50
|
Yilmaz AS, Ozturk S, Salih B, Ayyala RS, Sahiner N. ESI-IM-MS characterization of cyclodextrin complexes and their chemically cross-linked alpha (α-), beta (β-) and gamma (γ-) cyclodextrin particles as promising drug delivery materials with improved bioavailability. Colloids Surf B Biointerfaces 2023; 230:113522. [PMID: 37657404 DOI: 10.1016/j.colsurfb.2023.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Cyclodextrins (CDs) are natural cyclic oligosaccharides with a relatively hydrophobic cavity and a hydrophilic outer surface. In this study, alpha (α-), beta (β-) and gamma (γ-) CD particles were prepared by directly using α-, β-, and γ-CDs as monomeric units and divinyl sulfone (DVS) as a crosslinker in a single-step via reverse micelle microemulsion crosslinking technique. Particles of p(α-CD), p(β-CD), and p(γ-CD) were perfectly spherical in sub- 10 µm size ranges. The prepared p(CD) particles at 1.0 mg/mL concentrations were found biocompatible with > 95 % cell viability against L929 fibroblasts. Furthermore, p(α-CD) and p(β-CD) particles were found non-hemolytic with < 2 % hemolysis ratios, whereas p(γ-CD) particles were found to be slightly hemolytic with its 2.1 ± 0.4 % hemolysis ratio at 1.0 mg/mL concentration. Furthermore, a toxic compound, Bisphenol A (BPA) and a highly antioxidant polyphenol, curcumin (CUR) complexation with α-, β-, and γ-CD molecules was investigated via Electrospray-Ion Mobility-Mass Spectrometry (ESI-IM-MS) and tandem mass spectrometry (MS/MS) analysis. It was determined that the most stable noncovalent complex was in the case of β-CD, but the complex stoichiometry was changed by the hydrophobic nature of the guest molecules. In addition, BPA and CUR were separately loaded into prepared p(CD) particles as active agents. The drug loading and release studies showed that p(CD) particles possess governable loading and releasing profiles.
Collapse
Affiliation(s)
- Aynur Sanem Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Serhat Ozturk
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA; Department of Chemical & Biomedical Engineering, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|