1
|
Porrello A, Postiglione A, Badalamenti N, Bruno M, Basile A, Capasso L, Bontempo P, Maresca V. Investigating the antiproliferative and antioxidant potential of xanthoxylin and of essential oil isolated from Pulicaria incisa (Lam.) DC. herbal medicine. Fitoterapia 2025; 180:106344. [PMID: 39667678 DOI: 10.1016/j.fitote.2024.106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
In this study have been evaluated the antiproliferative and antioxidant activities of Israeli Pulicaria incisa (Lam.) DC. essential oil (Pi1), of essential oil partially purified by xanthoxylin (Pi2), one of its feature metabolites, and the isolated xanthoxylin (Xan). From the compositional analysis carried out by GC-MS oxygenated monoterpenes class was the main class (71.18 %), with cis-chrysanthenol (55.66 %) as the most abundant components, following by carvotanacetone (11.68 %). Other metabolites represented the second class (20.33 %), being xanthoxylin (15.35 %) the principal metabolites, isolated and characterized by NMR tecniques. Pi1 and Xan showed good antioxidant activity causing a clear reduction in ROS levels and an increase in CAT and SOD activity, while Pi2 showed a reduction in enzymatic activity. Furthermore, Pi1 and Xan demonstrated an apoptotic antiproliferative effect in a dose-dependent manner on solid and hematological tumors, unlike Pi2 which showed lower activity. These data showed that P. incisa EO had interesting antioxidant and antitumor activity and that the biological activities exhibited by the essential oil as a whole are mainly due to xanthoxylin.
Collapse
Affiliation(s)
- Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 17, Palermo 90128, Italy
| | - Alessia Postiglione
- Department of Biology, University of Naples "Federico II", Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126 Napoli, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 17, Palermo 90128, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 17, Palermo 90128, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Adriana Basile
- Department of Biology, University of Naples "Federico II", Complesso Univ. Monte Sant'Angelo, Via Cinthia 4, 80126 Napoli, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
2
|
Vaglica A, Badalamenti N, Ilardi V, Bruno M. The chemical composition of the aerial parts essential oil of four Phagnalon species collected in Sicily (Italy) and Greece. Nat Prod Res 2024; 38:1471-1477. [PMID: 36441179 DOI: 10.1080/14786419.2022.2150849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The genus Phagnalon Cass., included in the Asteraceae family, has a wide distribution, expanding from Macaronesia in the West to the Himalayas in the East, from South France and Nord Italy to Ethiopia and Arabian Peninsula. Various species of Phagnalon have been used in the popular medicine of several countries as medicinal herbs and food. The extracts and the secondary metabolites, have a varied application spectrum at several biological levels, with antimicrobial, antioxidant, antidiabetic, antitumor, etc. properties having been reported. The essential oils of four taxa, Phagnalon rupestre, Phagnalon saxatile var. viride, and Phagnalon rupestre subsp. illyricum var. metlesicsii collected in Sicily (Italy), never previously investigated, and of Phagnalon graecum collected in Greece, were analysed by gas chromatography-mass spectrometry (GC-MS). All the oils were very rich in monoterpene hydrocarbons, with β-pinene as main constituent. Chemotaxonomic considerations with respect to all the other oils of Phagnalon taxa were carried out.
Collapse
Affiliation(s)
- Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Vincenzo Ilardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
3
|
D'Agostino G, Cicio A, Vaglica A, Ilardi V, Bruno M. The chemical composition of the aerial parts essential oil of Ammi crinitum Guss. (Apiaceae) endemic of Sicily (Italy). Nat Prod Res 2024; 38:354-358. [PMID: 36047989 DOI: 10.1080/14786419.2022.2117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 10/14/2022]
Abstract
Ammi L. is a small genus of economically important plants belonging to Apiaceae family that includes only six taxa. In the present study the chemical composition of the essential oil from aerial parts of Ammi crinitum Guss., a very rare plant, endemic of Sicily, was analyzed by GC-MS. No previously paper has been published on this species. The results showed the presence of large quantity of monoterpene hydrocarbons with sabinene (63.9%), as the most abundant component. Other metabolites present in good quantity were γ-terpinene (8.0%), and 4-terpineol (3.7%). Based on the composition of the essential oil of all the other Ammi taxa, several considerations have been carried out.
Collapse
Affiliation(s)
- Giulia D'Agostino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Adele Cicio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Alessandro Vaglica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vincenzo Ilardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
4
|
Vaglica A, D'Agostino G, Bazan G, Bruno M. The chemical composition of the aerial parts essential oil of Lonas annua (L.) Vines & Druce (Asteraceae). Nat Prod Res 2024; 38:331-335. [PMID: 36054828 DOI: 10.1080/14786419.2022.2116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Lonas annua (L.) Vines & Druce (Asteraceae), commonly known as African Daisy or Yellow Ageratum is a rare therophyte native to northwestern Africa (Algeria, Morocco, and Tunisia) and Italy (Sicily and Sardinia). In the present study, the chemical composition of the essential oil from aerial parts of Lonas annua was analyzed by GC-MS. No one report has been previously published on the essential oil of this species. The results showed the presence of large quantity of two unusual metabolites 2,3-dihydrofarnesol (41.64%), and acenaphthene (36.18%). Chemotaxonomic considerations were carried out in order to confirm the phylogenetic reconstructions of Anthemideae.
Collapse
Affiliation(s)
- Alessandro Vaglica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giulia D'Agostino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giuseppe Bazan
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
5
|
Yagi S, Nilofar, Zengin G, Yildiztugay E, Caprioli G, Piatti D, Menghini L, Ferrante C, Di Simone SC, Chiavaroli A, Maggi F. Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods 2023; 12:4507. [PMID: 38137311 PMCID: PMC10742650 DOI: 10.3390/foods12244507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The present study was designed to determine the phenolic constituents, antioxidant, and enzyme inhibition activities of aerial parts and bulbs of Allium lycaonicum (family Amaryllidaceae). Extracts were prepared by maceration and Soxhlet/infusion using hexane, methanol, and water as extraction solvents. Generally, extracts from the aerial parts showed higher total phenolic and individual components and antioxidant activity than their respective bulb extracts. Maceration with water was the best to extract total phenolic content from the aerial parts (29.00 mg gallic acid equivalents (GAE)/g), while the Soxhlet extraction with hexane (22.29 mg GAE/g) was the best for the bulb. Maceration with methanol recovered the highest total flavonoid content from both the aerial parts (41.95 mg (rutin equivalents (RE)/g) and bulb (1.83 mg RE/g). Polar extracts of aerial parts were characterized by higher abundance of kaempferol-3-glucoside (≤20,624.27 µg/mg), hyperoside (≤19,722.76 µg/g), isoquercitrin (≤17,270.70 µg/g), delphindin-3,5-diglucoside (≤14,625.21 µg/g), and rutin (≤10,901.61 µg/g) than the bulb. Aerial parts' aqueous extract, prepared by maceration, exerted the highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical activity (64.09 mg trolox equivalents (TE)/g), Cu++ (83.03 mg TE/g) and Fe+++ (63.03 mg TE/g) reducing capacity while that prepared by infusion recorded the highest anti-DPPH (2,2-diphenyl-1-picrylhydrazyl) radical (31.70 mg TE/g) and metal chelating (27.66 mg EDTAE/g) activities. The highest total antioxidant activity (1.46 mmol TE/g) was obtained by maceration of the bulb with water. Extracts obtained by organic solvents showed remarkable enzyme inhibition properties against the tested enzymes. Soxhlet extraction of the bulb with hexane and methanol recorded the highest acetylcholinesterase inhibition (4.75 mg galanthamine equivalents (GALAE)/g) and tyrosinase inhibition (139.95 mg kojic acid equivalents/g) activities, respectively. Extracts obtained by maceration of the bulb with methanol and the aerial parts with hexane exerted the highest glucosidase inhibition (3.25 mmol acarbose equivalents/g) and butyrylcholinesterase inhibition (20.99 mg GALAE/g) activities, respectively. These data indicated that A. lycaonicum is a source of bioactive molecules with potential antioxidant and enzyme inhibition properties. Nonetheless, the extracts obtained through various solvents and extraction techniques showed variations in their phytoconstituent composition and biological properties.
Collapse
Affiliation(s)
- Sakina Yagi
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Laboratoire Agronomie Environnement, Université de Lorraine, 54000 Nancy, France;
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (N.); (G.Z.)
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (L.M.); (C.F.); (S.C.D.S.)
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; (N.); (G.Z.)
| | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (G.C.); (D.P.); (F.M.)
| | - Diletta Piatti
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (G.C.); (D.P.); (F.M.)
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (L.M.); (C.F.); (S.C.D.S.)
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (L.M.); (C.F.); (S.C.D.S.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (L.M.); (C.F.); (S.C.D.S.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (L.M.); (C.F.); (S.C.D.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; (G.C.); (D.P.); (F.M.)
| |
Collapse
|
6
|
Badalamenti N, Vaglica A, Ilardi V, Bruno M. The chemical composition of essential oil from Seseli tortuosum subsp. tortuosum and S. tortuosum subsp. maritimum (Apiaceae) aerial parts growing in Sicily (Italy). Nat Prod Res 2023; 37:3519-3524. [PMID: 35608147 DOI: 10.1080/14786419.2022.2078819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Seseli L. genus, belonging to the Apiaceae family, includes more than eighty taxa, mainly growing in Europe and Asia. Due to the several biological properties, species of this genus have been largely investigated, showing to be a rich source of coumarins, as well as, of essential oils with anti-inflammatory, antiviral, antifungal, cytotoxic, etc. properties. In the present study, the chemical composition of the essential oils from aerial parts of Sicilian accessions of Seseli tortuosum subsp. tortuosum and S. tortuosum subsp. maritimum were analysed by GC-MS. No one report has been previously published on the subsp. maritimum. The results showed the presence, in both oils, of large quantity of monoterpene hydrocarbons. Main metabolites were β-pinene (15.81-19.84%), α-pinene (14.63-18.52%), sylvestrene (11.18-17.45%) and 3-carene (14.58%), the last one being absent in the oil of subsp. maritimum. Chemotaxonomic considerations with respect to other oils of Seseli taxa were carried out.
Collapse
Affiliation(s)
- Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Alessandro Vaglica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vincenzo Ilardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
7
|
Bancheva S, Badalamenti N, Fontana G, Catinella G, Porrello A, Bruno M. Chemical composition of the essential oil of Cyanus adscendens (Bartl.) Soják and C. orbelicus (Velen.) Soják growing wild in Bulgaria, and PCA analysis of genus Cyanus Mill. Nat Prod Res 2023; 37:3588-3594. [PMID: 35787220 DOI: 10.1080/14786419.2022.2095381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Cyanus Mill. genus, belonging to the Asteraceae family, includes more than 50 taxa, mainly growing in Central and Southern Europe, North Africa, Asia Minor, and the Caucasus. Previous investigations on Cyanus taxa have shown that they are rich source of flavonoids and phenolic compounds but, differently from species of genus Centaurea, almost devoid of sesquiterpene lactones. In the present study, the chemical composition of the essential oils from aerial parts of Cyanus adscendens (CA) and C. orbelicus (CO), collected in Bulgaria, and not previously investigated, was evaluated by GC-MS. The main components of CA were α-bergamotene (31.3%), (Z,Z,Z)-9,12,15-octadecatrien-1-ol (14.5%) and calarenepoxide (11.0%). Caryophyllene oxide (12.0%), together with α-cadinol (10.9%) and spathulenol (8.8%), were recognized as the main constituent of C. orbelicus EO. Furthermore, a complete review on the composition of all essential oils of the Cyanus taxa studied so far has been inserted and cluster analysis (PCA) was carried out.
Collapse
Affiliation(s)
- Svetlana Bancheva
- Botanical Garden of Bulgarian Academy of Sciences, Sofia, Bulgaria
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences 23, Sofia, Bulgaria
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Giorgia Catinella
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Badalamenti N, Vaglica A, Maggio A, Bruno M. A new ferulol derivative isolated from the aerial parts of Ferulago nodosa (L.) Boiss. growing in Sicily (Italy). Nat Prod Res 2023; 37:3290-3296. [PMID: 35561229 DOI: 10.1080/14786419.2022.2074995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Ferulago nodosa (L.) Boiss. (Apiaceae) is a species occurring in the Balkan-Tyrrhenian area being present in Crete, Greece, Albania, and probably in Macedonia. Although the western disjointed population of Sicily has been classified as an endemic sub-species, F. nodosa subsp. geniculata (Guss.) Troia & Raimondo, it is not officially accepted. From the aerial parts of the Sicilian accession of this species four known metabolites (1-4), and a new ferulol derivative (5), were isolated and characterized. The structure of the new compounds was determined by mean of extensive NMR spectroscopic experiments.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Italy
| |
Collapse
|
9
|
Metabolome analysis, nutrient and antioxidant potential of aerial and underground parts ofAjuga parviflora Benth. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Badalamenti N, Vaglica A, Maggio A, Bruno M, Quassinti L, Bramucci M, Maggi F. Cytotoxic activity of several ent-kaurane derivatives of atractyligenin. Synthesis of unreported diterpenic skeleton by chemical rearrangement. PHYTOCHEMISTRY 2022; 204:113435. [PMID: 36154826 DOI: 10.1016/j.phytochem.2022.113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Atractyloside, carboxyatractyloside, their aglycon atractyligenin, and several synthetic derivatives were tested and found to be active against a panel of human tumor cell lines. Atractyligenin was subjected to oxidation, bromination, and elimination reactions, obtaining several compounds. A singular skeleton was synthesized by chemical rearrangement starting from 3β-bromo-2,15-diketoatractyligenin methyl ester. The synthesized compounds resulted active against all cell lines tested. In particular, 15-ketoatractyligenin methyl ester and 3β-bromo-2,15-diketoatractyligenin methyl ester resulted the most active with IC50 values of 0.427 and 0.723 μM against A375 melanoma cell line. Excellent results were also obtained against the colon cancer cell line CaCo2, with slightly lower antiproliferative activity. An interesting extension of the study should be to analyze the atractyligenin derivatives also as target for human melanoma and human colon cancer cells.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, 90128, Italy
| | - Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, 90128, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, 90128, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, 90128, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, 90128, Italy.
| | - Luana Quassinti
- School of Pharmacy, Universitiy of Camerino, Via Gentile III da Varano, Camerino, 62032, Italy
| | - Massimo Bramucci
- School of Pharmacy, Universitiy of Camerino, Via Gentile III da Varano, Camerino, 62032, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| |
Collapse
|
11
|
Napolitano A, Di Napoli M, Castagliuolo G, Badalamenti N, Cicio A, Bruno M, Piacente S, Maresca V, Cianciullo P, Capasso L, Bontempo P, Varcamonti M, Basile A, Zanfardino A. The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) growing in Kythira Island (Greece), and their antioxidant, antimicrobial, and antiproliferative properties. PHYTOCHEMISTRY 2022; 203:113373. [PMID: 35977603 DOI: 10.1016/j.phytochem.2022.113373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 μg/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL.
Collapse
Affiliation(s)
- Assunta Napolitano
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Adele Cicio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy.
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| |
Collapse
|
12
|
Acaricidal Activity of Bufadienolides Isolated from Drimia pancration against Tetranychus urticae, and Structural Elucidation of Arenobufagin-3-O-α-L-rhamnopyranoside. PLANTS 2022; 11:plants11131629. [PMID: 35807580 PMCID: PMC9268777 DOI: 10.3390/plants11131629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/31/2023]
Abstract
Chemical characterization of the bulbs of Drimia pancration was conducted to isolate four steroidal saponins (1–4). Earlier, we focused on the structural elucidation of compounds 1–3. Herein, by means of 1H-NMR, 13C-NMR, Nuclear Overhauser Effects (NOE), and 2D-NMR spectra, the full stereochemical structure of 4 is reported, and all the 1H and 13C signals are assigned. Compounds 1–4 were tested for their acaricidal properties against the two-spotted spider mite Tetranychus urticae. Our results showed excellent activity of compound 1, with an LD50 (µg/cm2) of 0.29 and a LD90 (µg/cm2) of 0.96, whereas compounds 2, 3, and 4 showed moderate activity. Furthermore, the acaricidal and cytotoxic properties of the crude extract were also investigated. Of note, after 96 h of exposure, the acaricidal activity of compound 1 was higher than that of the positive control, hexythiazox. Indeed, for compound 1, LD50 and LD90 were 0.29 and 0.96 µg/cm2, respectively, while hexythiazox LD50(90) was 18.7 (132.5) µg/cm2. Additionally, D. pancration extract, after 72 h, induced a high cytotoxic effect in HaCaT and THP-1 cell lines, with an IC50 of 7.37 ± 0.5 µg/mL and 3.50 ± 0.15 µg/mL, respectively. Overall, D. pancration can be considered as a green source of novel acaricides effective against mites of agricultural importance, such as T. urticae, pending proper field validation and the assessment of non-target effects on other invertebrate species.
Collapse
|
13
|
Badalamenti N, Sottile F, Bruno M. Ethnobotany, Phytochemistry, Biological, and Nutritional Properties of Genus Crepis-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040519. [PMID: 35214852 PMCID: PMC8875603 DOI: 10.3390/plants11040519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
The genus Crepis L., included within the Asteraceae family, has a very wide distribution, expanding throughout the northern hemisphere, including Europe, northern Africa, and temperate Asia. This genus has a fundamental value from biodynamic and ecological perspectives, with the different species often being chosen for soil conservation, for environmental sustainability, and for their attraction towards pollinating species. Furthermore, various species of Crepis have been used in the popular medicine of several countries as medicinal herbs and food since ancient times. In most cases, the species is consumed either in the form of a decoction, or as a salad, and is used for its cardiovascular properties, as a digestive, for problems related to sight, for the treatment of diabetes, and for joint diseases. This literature review, the first one of the Crepis genus, includes publications with the word 'Crepis', and considers the single metabolites identified, characterised, and tested to evaluate their biological potential. The various isolated compounds, including in most cases sesquiterpenes and flavonoids, were obtained by extracting the roots and aerial parts of the different species. The secondary metabolites, extracted using traditional (solvent extraction, column chromatography, preparative thin layer chromatography, preparative HPLC, vacuum liquid chromatography), and modern systems such as ultrasounds, microwaves, etc., and characterised by mono- and bi- dimensional NMR experiments and by HPLC-MS, have a varied application spectrum at a biological level, with antimicrobial, antioxidant, antidiabetic, antitumor, antiviral, antiulcer, phytotoxic, and nutritional properties having been reported. Unfortunately, in vitro tests have not always been accompanied by in vivo tests, and this is the major critical aspect that emerges from the study of the scientific aspects related to this genus. Therefore, extensive investigations are necessary to evaluate the real capacity of the different species used in food, and above all to discover what the different plants that have never been analysed could offer at a scientific level.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
| | - Francesco Sottile
- Department of Architecture, University of Palermo, Viale delle Scienze, Parco d’Orleans II, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy;
- Centro Interdipartimentale di Ricerca “Riuszo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, I-90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
14
|
Snoussi M, Noumi E, Hajlaoui H, Bouslama L, Hamdi A, Saeed M, Alreshidi M, Adnan M, Al-Rashidi A, Aouadi K, Ghannay S, Ceylan O, De Feo V, Kadri A. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. PLANTS 2022; 11:plants11040495. [PMID: 35214828 PMCID: PMC8878528 DOI: 10.3390/plants11040495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
The present study was the first to evaluate the phytochemical composition, antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing potential of Allium subhirsutum L. (hairy garlic) aqueous extract through in vitro and in silico studies. The phytochemical profile revealed the presence of saponins, terpenes, flavonols/flavonones, flavonoids, and fatty acids, particularly with flavonoids (231 ± 0.022 mg QE/g extract), tannins (159 ± 0.006 mg TAE/g extract), and phenols (4 ± 0.004 mg GAE/g extract). Gas chromatography–mass spectrometry (GC–MS) analysis identified 15 bioactive compounds, such as 5-hydroxymethylfurfural (37.04%), methyl methanethiolsulfonate (21.33%), furfural (7.64%), beta-D-glucopyranose, 1,6-anhydro- (6.17%), 1,6-anhydro-beta-D-glucofuranose (3.6%), trisulfide, di-2-propenyl (2.70%), and diallyl disulfide (1.93%). The extract was found to be non-toxic with 50% cytotoxic concentration higher than 30,000 µg/mL. The investigation of the antioxidant activity via DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (IC50 = 1 μg/mL), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); IC50 = 0.698 ± 0.107 μg/mL), and β-carotene (IC50 = 0.811 ± 0.036 mg/mL) was assessed. Nevertheless, good antimicrobial potential against a diverse panel of microorganisms with bacteriostatic and fungistatic effect was observed. Quorum sensing inhibition effects were also assessed, and the data showed the ability of the extract to inhibit the production of violacein by the mutant C. violaceum strain in concentration-dependent manner. Similarly, the biofilm formation by all tested strains was inhibited at low concentrations. In silico pharmacokinetic and toxicological prediction indicated that, out of the sixteen identified compounds, fourteen showed promising drug ability and could be used as lead compounds for further development and drug design. Hence, these findings support the popular use of hairy garlic as a source of bioactive compounds with potential application for human health.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Hafed Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia;
| | - Assia Hamdi
- Laboratoire de Développement Chimique Galénique et Pharmacologique des Médicaments, Faculté’ de Pharmacie, Université de Monastir, Monastir 5000, Tunisia;
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Ayshah Al-Rashidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla SitkiKocman University, Mugla 48147, Turkey;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65731, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
15
|
Candela RG, Lazzara G, Piacente S, Bruno M, Cavallaro G, Badalamenti N. Conversion of Organic Dyes into Pigments: Extraction of Flavonoids from Blackberries ( Rubus ulmifolius) and Stabilization. Molecules 2021; 26:molecules26206278. [PMID: 34684859 PMCID: PMC8538118 DOI: 10.3390/molecules26206278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The blackberry’s color is composed mainly of natural dyes called anthocyanins. Their color is red–purple, and they can be used as a natural colorant. Anthocyanins are flavonoids, which are products of plants, and their colors range from orange and red to various shades of blue, purple and green, according to pH. In this study, the chemical composition of an extract obtained from blackberries was defined by LC-ESI/LTQOrbitrap/MS in positive and negative ionization mode. Furthermore, we investigated the adsorption process of blackberry extract using several inorganic fillers, such as metakaolin, silica, Lipari pumice, white pozzolan and alumina. The pigments exhibit different colors as a function of their interactions with the fillers. The analysis of the absorption data allowed the estimation of the maximum adsorbing capacity of each individual filler tested. Through thermogravimetric measurements (TGA), the thermal stability and the real adsorption of the organic extract were determined.
Collapse
Affiliation(s)
- Rossella G. Candela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.C.); (M.B.)
| | - Giuseppe Lazzara
- Physics and Chemistry Department (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy;
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.C.); (M.B.)
| | - Giuseppe Cavallaro
- Physics and Chemistry Department (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (G.C.); (N.B.)
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (R.G.C.); (M.B.)
- Correspondence: (G.C.); (N.B.)
| |
Collapse
|
16
|
Saoudi M, Badraoui R, Chira A, Saeed M, Bouali N, Elkahoui S, Alam JM, Kallel C, El Feki A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules 2021; 26:4875. [PMID: 34443463 PMCID: PMC8398921 DOI: 10.3390/molecules26164875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug "Cytolcentella® cream". Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
- Section of Histology and Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1007, Tunisia
| | - Ahlem Chira
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| | - Mohd Saeed
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Nouha Bouali
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Salem Elkahoui
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Jahoor M. Alam
- Laboratory of General Biology, Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia; (M.S.); (N.B.); (S.E.); (J.M.A.)
| | - Choumous Kallel
- Hematology Laboratory, Hospital Habib Bourguiba, Sfax 3029, Tunisia;
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax 3054, Tunisia; (A.C.); (A.E.F.)
| |
Collapse
|
17
|
Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods 2021; 10:foods10061383. [PMID: 34203950 PMCID: PMC8232813 DOI: 10.3390/foods10061383] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, the antioxidant and anti-inflammatory effects of Zingiber officinale roscoe and Allium subhirsutum aqueous extracts were examined in a carrageenan-induced acute inflammation model. Some markers of inflammation such as hematological parameters, fibrinogen and C-reactive protein were measured. Variables reflecting oxidative stress included thiobarbituric acid reactive substances (TBARS), advanced oxidation of protein products (AOPP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione were determined in both inflamed foci and erythrocytes. The in silico molecular docking simulation showed that the main components of Zingiber officinale roscoe and Allium subhirsutum bound to toll-like receptor 6 (TLR6) with high affinities. Moreover, histological examinations of paw edema were carried out. Both Zingiber officinale roscoe and Allium subhirsutum ameliorated the induced inflammation and oxidative stress status as outlined by anti-edematous, antioxidant and anti-inflammatory activities. Our investigation lends pharmacological support to the medical uses of these spices in the management of inflammatory disorders and oxidative damage. The results of the in silico assay satisfactory explain the in vivo effects as compared with indomethacin.
Collapse
|
18
|
Badraoui R, Rebai T, Elkahoui S, Alreshidi M, N. Veettil V, Noumi E, A. Al-Motair K, Aouadi K, Kadri A, De Feo V, Snoussi M. Allium subhirsutum L. as a Potential Source of Antioxidant and Anticancer Bioactive Molecules: HR-LCMS Phytochemical Profiling, In Vitro and In Vivo Pharmacological Study. Antioxidants (Basel) 2020; 9:E1003. [PMID: 33081189 PMCID: PMC7602730 DOI: 10.3390/antiox9101003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated Allium subhirsutum L. (AS) anticancer and antioxidant effects and inhibition of tumor angiogenesis in a murine model of skeletal metastases due to inoculation of Walker 256/B cells. Phytochemical composition of AS extract (ASE) was studied by High Resolution-Liquid Chromatography Mass Spectroscopy (HR-LCMS). Total phenolic and flavonoid contents (TPC and TFC) were determined. In vitro, the antioxidant properties were evaluated by reducing power and antiradical activity against DPPH. Cancer cells' proliferation, apoptosis, metastatic development and angiogenesis were evaluated using Walker 256/B and MatLyLu cells. The p-coumaric acid was the major phenolic acid (1700 µg/g extract). ASE showed high levels of TPC and TFC and proved potent antioxidant effects. ASE inhibited Walker 256/B and MatLyLu cells' proliferation (Half-maximal inhibitory concentration: IC50 ≃ 150 µg/mL) and induced apoptosis. In silico and in vivo assays confirmed these findings. ASE effectively acts as a chemo-preventive compound, induces apoptosis and attenuates angiogenesis and osteolytic metastases due to Walker 256/B malignant cells.
Collapse
Affiliation(s)
- Riadh Badraoui
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia;
| | - Tarek Rebai
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia;
| | - Salem Elkahoui
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia
| | - Mousa Alreshidi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
| | - Vajid N. Veettil
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
| | - Emira Noumi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Bioressources: Integrative Biology & Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Khaled A. Al-Motair
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, BP 1117, Sfax 3000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy;
| | - Mejdi Snoussi
- Department of Biology, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (S.E.); (M.A.); (V.N.V.); (E.N.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|