1
|
Yuniarti L, Fakih TM, Tejasari M, Indriyanti RA, Maryam E, Nugroho BH. Comprehensive Bioactive Compound Profiling of Artocarpus heterophyllus Leaves: LC-MS/MS Analysis, Antioxidant Potential, and Molecular Insights. Drug Des Devel Ther 2025; 19:1195-1213. [PMID: 39991090 PMCID: PMC11846532 DOI: 10.2147/dddt.s507658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Artocarpus heterophyllus leaves, rich in phytochemicals, present a promising source of natural bioactive compounds for therapeutic and cosmetic applications. This study evaluated the phytochemical composition, antioxidant potential, and tyrosinase inhibition activities of leaf extracts while assessing the enzyme inhibition properties of key compounds through molecular docking and dynamics simulations. Patients and Methods Ethanol and ethyl acetate extracts were analyzed using Thin Layer Chromatography (TLC) and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS). Antioxidant activity was determined via DPPH radical scavenging and tyrosinase inhibition was compared against kojic acid. Molecular docking and molecular dynamics simulations explored binding interactions of Artocarpin and Sitosterol with matrix metalloproteinases (MMPs) and tyrosinase. Results Artocarpin and Sitosterol were identified as primary bioactive compounds. Ethanol extracts exhibited stronger tyrosinase inhibition (IC50: 177.24 ppm), while ethyl acetate extracts showed superior antioxidant activity (IC50: 117.64 ppm). Molecular docking highlighted high binding affinities of Artocarpin and Sitosterol with MMP-13 and tyrosinase. MD simulations confirmed stable interactions, particularly between Artocarpin and MMP-13, supporting its potential as a therapeutic agent. Conclusion Artocarpin and Sitosterol from Artocarpus heterophyllus leaf extracts demonstrate potent antioxidant, enzyme inhibitory, and tyrosinase inhibition activities. These findings underscore their potential for managing oxidative stress, inflammation, and pigmentation disorders, warranting further investigation into their bioavailability and formulation for therapeutic and cosmetic uses.
Collapse
Affiliation(s)
- Lelly Yuniarti
- Department of Biochemistry, Faculty of Medicine, Universitas Islam Bandung, Jl. Tamansari, Bandung, 40116, Indonesia
| | - Taufik Muhammad Fakih
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jl. Ranggagading, Bandung, 40116, Indonesia
| | - Maya Tejasari
- Department of Histology, Faculty of Medicine, Universitas Islam Bandung, Jl. Tamansari, Bandung, 40116, Indonesia
| | - Raden Anita Indriyanti
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Bandung, Jl. Tamansari, Bandung, 40116, Indonesia
| | - Erni Maryam
- Study Program in Skin Aging and Medical Aesthetics, Faculty of Medicine, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, 40531, Indonesia
| | - Bambang Hernawan Nugroho
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang, Sleman, 55584, Indonesia
| |
Collapse
|
2
|
Mohammad Zaki M, Helmi El-Sayed I, Abdel-Mogib M, Abdel-Hameed El-Shehawy A, El-Khawaga OY. The cardioprotective properties of Persicaria maculosa and Citrus sinensis extracts against doxorubicin-induced cardiotoxicity in mice. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:455-469. [PMID: 38952773 PMCID: PMC11179186 DOI: 10.22038/ajp.2024.24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 07/03/2024]
Abstract
Objective This study assessed the cardioprotective properties of Persicaria maculosa (PME) and Citrus sinensis (CME) hydro-methanolic extracts, besides Citrus sinensis aqueous extract (CWE) against doxorubicin (DOX)-induced cardiotoxicity. Materials and Methods The extracts were characterized. Mice were divided into eight groups: control (saline), DOX, protected (injected with 200 mg/kg of PME, CWE or CME for 21 days, orally, and DOX), and extracts (PME, CWE or CME administration, orally, for 21 days). DOX was injected (5 mg/kg, ip) on days 8, 13 and 18 of the experiment. Cardiac tumor necrosis factor-alpha (TNF-α), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and carbonyl reductase 1 (CBR1) expression levels, besides superoxide dismutase, catalase, malondialdehyde, nitric oxide and total protein levels were evaluated. Serum lactate dehydrogenase, creatine phosphokinase cardiac isoenzyme, aspartate transaminase, cholesterol, triglycerides and creatinine levels, as well as the cardiac tissues were examined. Results Comparing with the control, DOX considerably (p<0.01) up-regulated TNF-α expression, malondialdehyde, nitric oxide, cardiac enzymes, lipids and creatinine levels, while it significantly (p<0.01) down-regulated Nrf2 and CBR1. Additionally, DOX interfered with antioxidant enzymes' activities (p<0.01). Conversely, protected groups showed a significant (p<0.01) amelioration of DOX-induced cardiotoxic effects. Conclusion The current study provides a new understanding of P. maculosa and C. sinensis cardioprotective mechanisms. The extracts' cardioprotective effects may be due to their antioxidant activities, ability to maintain the redox homeostasis through regulation of important antioxidant genes and primary antioxidant enzymes, and capability to recover inflammatory cytokines and lipids levels. Noteworthy, the tested extracts showed no toxic changes on the normal mice.
Collapse
Affiliation(s)
- Mohammad Mohammad Zaki
- Department of Chemistry, Faculty of Science, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
- Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | - Ibrahim Helmi El-Sayed
- Department of Chemistry, Faculty of Science, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Mamdouh Abdel-Mogib
- Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | | | | |
Collapse
|
3
|
da Costa YFG, Llorent-Martínez EJ, Fernandes LS, de Freitas PHS, Scio E, de Sousa OV, Castilho PC, Alves MS. Phenolics Profiling by HPLC-DAD-ESI/MS n of the Scientific Unknown Polygonum hydropiperoides Michx. and Its Antioxidant and Anti-Methicillin-Resistant Staphylococcus aureus Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1606. [PMID: 37111830 PMCID: PMC10143521 DOI: 10.3390/plants12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Polygonum hydropiperoides Michx. is an Asian native plant species that is also widely distributed in the Americas. Despite its traditional uses, P. hydropiperoides is scarcely scientifically exploited. This study aimed to chemically characterize and investigate the antioxidant and antibacterial activities of hexane (HE-Ph), ethyl acetate (EAE-Ph), and ethanolic (EE-Ph) extracts from aerial parts of P. hydropiperoides. The chemical characterization was performed through HPLC-DAD-ESI/MSn. The antioxidant activity was assessed by the phosphomolybdenum reducing power, nitric oxide inhibition, and the β-carotene bleaching assays. The antibacterial activity was determined by the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration followed by the classification of the antibacterial effect. Chemical characterization revealed the expressive presence of phenolic acids and flavonoids in EAE-Ph. An increased antioxidant capacity was revealed in EAE-Ph. Regarding antibacterial activity, EAE-Ph showed weak to moderate property against 13 strains tested with MIC values ranging from 625 to 5000 µg/mL, with bactericidal or bacteriostatic effects. Glucogallin and gallic acid stand out as the most relevant bioactive compounds. These results suggest that P. hydropiperoides is a natural source of active substances, supporting this species' traditional use.
Collapse
Affiliation(s)
- Ygor Ferreira Garcia da Costa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Eulogio José Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaén, Spain;
| | - Laura Silva Fernandes
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Pedro Henrique Santos de Freitas
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (P.H.S.d.F.); (E.S.)
| | - Elita Scio
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (P.H.S.d.F.); (E.S.)
| | - Orlando Vieira de Sousa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Paula Cristina Castilho
- Madeira Chemical Center, Faculty of Exact and Engineering, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Maria Silvana Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| |
Collapse
|
4
|
Pawłowska KA, Kryżman M, Zidorn C, Pagitz K, Popowski D, Granica S. HPLC-DAD-MS 3 fingerprints of phenolics of selected Polygonum taxa and their chemometric analysis. PHYTOCHEMISTRY 2023; 208:113605. [PMID: 36746370 DOI: 10.1016/j.phytochem.2023.113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Many Polygonaceae taxa such as Bistorta officinalis, Persicaria amphibia, Persicaria hydropiper, Persicaria lapathifolia, Persicaria maculosa, Persicaria mitis, Polygonum aviculare occur naturally in the entire territory of Poland and are also common in other European countries. Many of these species are also utilised as medicinal plants. In this manuscript we establish the phytochemical profiles of selected taxa from the Polygonaceae focusing on phenolics. Additionally, we try to find chemophenetic markers for the species investigated. Compounds were detected and characterised based on HPLC-DAD-MS data, quantified, and furtherly analysed using multivariate analyses. Chemophenetic markers were identified also considering previous literature.
Collapse
Affiliation(s)
- Karolina A Pawłowska
- Microbiota Lab, Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Maria Kryżman
- Microbiota Lab, Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| | - Konrad Pagitz
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria.
| | - Dominik Popowski
- Microbiota Lab, Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland; Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Sebastian Granica
- Microbiota Lab, Department of Biology and Pharmacognosy, Faculty of Pharmacy, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
5
|
Seimandi G, Álvarez N, Stegmayer MI, Fernández L, Ruiz V, Favaro MA, Derita M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules 2021; 26:5956. [PMID: 34641500 PMCID: PMC8512787 DOI: 10.3390/molecules26195956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
The discovery of new pharmaceutical identities, particularly anti-infective agents, represents an urgent need due to the increase in immunocompromised patients and the ineffectiveness/toxicity of the drugs currently used. The scientific community has recognized in the last decades the importance of the plant kingdom as a huge source of novel molecules which could act against different type of infections or illness. However, the great diversity of plant species makes it difficult to select them with probabilities of success, adding to the fact that existing information is difficult to find, it is atomized or disordered. Persicaria and Polygonum constitute two of the main representatives of the Polygonaceae family, which have been extensively used in traditional medicine worldwide. Important and structurally diverse bioactive compounds have been isolated from these genera of wild plants; among them, sesquiterpenes and flavonoids should be remarked. In this article, we firstly mention all the species reported with pharmacological use and their geographical distribution. Moreover, a number of tables which summarize an update detailing the type of natural product (extract or isolated compound), applied doses, displayed bioassays and the results obtained for the main bioactivities of these genera cited in the literature during the past 40 years. Antimicrobial, antioxidant, analgesic and anti-inflammatory, antinociceptive, anticancer, antiviral, antiparasitic, anti-diabetic, antipyretic, hepatoprotective, diuretic, gastroprotective and neuropharmacological activities were explored and reviewed in this work, concluding that both genera could be the source for upcoming molecules to treat different human diseases.
Collapse
Affiliation(s)
- Gisela Seimandi
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Norma Álvarez
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Inés Stegmayer
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Laura Fernández
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Verónica Ruiz
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - María Alejandra Favaro
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
| | - Marcos Derita
- ICiAgro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza 3080HOF, Argentina; (G.S.); (N.Á.); (M.I.S.); (L.F.); (M.A.F.)
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| |
Collapse
|
6
|
Fernández-Galleguillos C, Quesada-Romero L, Puerta A, Padrón JM, Souza E, Romero-Parra J, Simirgiotis MJ. UHPLC-MS Chemical Fingerprinting and Antioxidant, Antiproliferative, and Enzyme Inhibition Potential of Gaultheria pumila Berries. Metabolites 2021; 11:metabo11080523. [PMID: 34436464 PMCID: PMC8401902 DOI: 10.3390/metabo11080523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Gaultheria pumila (Ericaceae) (known as Chaura or Mutilla) is a Chilean native small shrub that produces berry fruits consumed by local Mapuche people. In this study, the chemical fingerprinting and antioxidant, enzyme inhibition, and antiproliferative activities of the berries were investigated for the first time. Thirty-six metabolites were identified in the fruits by ultra-high performance liquid chromatography-photodiode array detection, hyphenated with Orbitrap mass spectrometry analysis (UHPLC-DAD-Orbitrap-MS). Metabolites, included anthocyanins, phenolic acids, flavonoids, iridoids, diterpenes, and fatty acids. Moderate inhibitory activities against acetylcholinesterase (7.7 ± 0.3 µg/mL), butyrylcholinesterase (34.5 ± 0.5 µg/mL), and tyrosinase (3.3 ± 0.2 µg/mL) enzymes were found. Moreover, selected major compounds were subjected to docking assays in light of their experimental inhibition. Results indicated that hydrogen bonding, π–π interaction, and a salt bridge interaction contributed significantly. Gaultheria pumila berries showed a total phenolic content of 189.2 ± 0.2 mg of gallic acid equivalents/g, total flavonoid content of 51.8 ± 0.1 mg quercetin equivalents/g, and total anthocyanin content of 47.3 ± 0.2 mg of cianydin-3-glucoside equivalents/g. Antioxidant activity was assessed using DPPH (92.8 ± 0.1 µg/mL), FRAP (134.1 ± 0.1 μmol Trolox equivalents/g), and ORAC (4251.6 ± 16.9 μmol Trolox equivalents/g) assays. Conversely, Gaultheria pumila showed a scarce antiproliferative potential against several solid human cancer cells. Our findings suggest that Gaultheria pumila berries have several bioactive metabolites with inhibitory effects against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, and have the potential for use in food supplements.
Collapse
Affiliation(s)
- Carlos Fernández-Galleguillos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - Luisa Quesada-Romero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - Ernane Souza
- The Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, USA;
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 6640022, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| |
Collapse
|
7
|
Swargiary A, Roy MK, Boro H. Persicaria strigosa (R.Br.) Nakai: a natural anthelmintic? Parasitol Res 2021; 120:3215-3227. [PMID: 34337681 DOI: 10.1007/s00436-021-07249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Persicaria strigosa (R.Br.) Nakai. (Family Polygonaceae) is an important plant of Assam, having several ethnobotanical uses. Tribal communities consume leaf extracts to cure helminth infection. The present study investigated the antioxidant, phytochemicals, and anthelmintic activity of P. strigosa. Total phenolic and flavonoid contents were estimated following standard methods. Antioxidant properties were analyzed by TAC, FRAP, DPPH, ABTS, and TBARS assays. Anthelmintic activity of plant was investigated in Paramphistomum sp. treated with 5 mg/mL, and paralysis and death times were recorded. The most potent solvent extract was performed GC-MS analysis to identify the phytocompounds. Plant extract-treated parasites were further analyzed for biochemical changes. Additionally, molecular docking was performed to study the binding affinities between phytocompounds and enzymes. P. strigosa showed rich phenolics, flavonoids, and antioxidant properties. Ethyl acetate and methanolic extracts showed more powerful antioxidant properties than other extracts. In vitro anthelmintic study found ethyl acetate and diethyl ether the most active extracts. Treated parasites showed a significant decrease in enzyme activity. The highest inhibition was observed in AchE, followed by MDH, LDH, ALP, and ACP. GC-MS study identified 12 probable compounds from the ethyl acetate extract of P. strigosa. Molecular docking showed the strongest binding affinity between the phytocompounds and AchE enzyme (- 7.6 kcal/mol). Overall, compounds C6, C7, and C12 showed better binding affinity compared to other compounds. The in vitro helminth bioassays and biochemical analysis suggest Persicaria strigosa a possible anthelmintic agent. However, isolation and characterization of bioactive compound(s) may promise new drug candidates for helminth infections.
Collapse
Affiliation(s)
- Ananta Swargiary
- Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India.
| | - Mritunjoy Kumar Roy
- Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India
| | - Harmonjit Boro
- Department of Zoology, Pharmacology and Bioinformatics Laboratory, Bodoland University, Kokrajhar, 783370, Assam, India
| |
Collapse
|
8
|
Barrientos RE, Ahmed S, Cortés C, Fernández-Galleguillos C, Romero-Parra J, Simirgiotis MJ, Echeverría J. Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA-Orbitrap-Mass Spectrometry. Molecules 2020; 25:E3750. [PMID: 32824604 PMCID: PMC7464012 DOI: 10.3390/molecules25163750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) is a Chilean endemic plant popularly known as "quiscal" and produces an edible fruit consumed by the local Mapuche communities named as "chupón". In this study, several metabolites including phenolic acids, organic acids, sugar derivatives, catechins, proanthocyanidins, fatty acids, iridoids, coumarins, benzophenone, flavonoids, and terpenes were identified in G. sphacelata fruits using ultrahigh performance liquid chromatography-photodiode array detection coupled with a Orbitrap mass spectrometry (UHPLC-PDA-Orbitrap-MS) analysis for the first time. The fruits showed moderate antioxidant capacities (i.e., 487.11 ± 26.22 μmol TE/g dry weight) in the stable radical DPPH assay, 169.08 ± 9.81 TE/g dry weight in the ferric reducing power assay, 190.32 ± 6.23 TE/g dry weight in the ABTS assay, and 76.46 ± 3.18% inhibition in the superoxide anion scavenging assay. The cholinesterase inhibitory potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the findings, promising results were observed for pulp and seeds. Our findings suggest that G. sphacelata fruits are a rich source of diverse secondary metabolites with antioxidant capacities. In addition, the inhibitory effects against AChE and BChE suggest that natural products or food supplements derived from G. sphacelata fruits are of interest for their neuroprotective potential.
Collapse
Affiliation(s)
- Ruth E. Barrientos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Carmen Cortés
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Carlos Fernández-Galleguillos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 8380544, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170002, Chile
| |
Collapse
|