1
|
Irmak E, Tunca Sanlier N, Sanlier N. Could polyphenols be an effective treatment in the management of polycystic ovary syndrome? INT J VITAM NUTR RES 2024; 94:422-433. [PMID: 38229476 DOI: 10.1024/0300-9831/a000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.
Collapse
Affiliation(s)
- Esra Irmak
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| | - Nazli Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| |
Collapse
|
2
|
Zheng L, San Y, Xing Y, Regenstein JM. Rice proteins: A review of their extraction, modification techniques and applications. Int J Biol Macromol 2024; 268:131705. [PMID: 38643916 DOI: 10.1016/j.ijbiomac.2024.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rice protein is highly nutritious and easy to digest and absorb. Its hydrolyzed peptides have significant effects on lowering blood pressure and cholesterol. First, a detailed and comprehensive explanation of rice protein extraction methods was given, and it was found that the combination of enzymatic and physical methods could improve the extraction rate of rice protein, but it was only suitable for laboratory studies. Second, the methods for improving the functional properties of rice protein were introduced, including physical modification, chemical modification, and enzymatic modification. Enzymatic modification of the solubility of rice protein to improve its functional properties has certain limitations due to the low degree of hydrolysis, the long time required, the low utilization of the enzyme, and the possible undesirable taste of the product. Finally, the development and utilization of rice protein was summarized and the future research direction was suggested. This paper lists the advantages and disadvantages of various extraction techniques, points out the shortcomings of existing extraction techniques, aims to fill the gap in the field of rice protein extraction, and then provides a possible improvement method for the extraction and development of rice protein in the future.
Collapse
Affiliation(s)
- Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Ltd., Harbin, Heilongjiang 150036, China.
| | - Yue San
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuejiao Xing
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| |
Collapse
|
3
|
Su G, Chen J, Huang L, Zhao M, Huang Q, Zhang J, Zeng X, Zhang Y, Deng L, Zhao T. Effects of walnut seed coat polyphenols on walnut protein hydrolysates: Structural alterations, hydrolysis efficiency, and acetylcholinesterase inhibitory capacity. Food Chem 2024; 437:137905. [PMID: 37922803 DOI: 10.1016/j.foodchem.2023.137905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The walnut meal is rich in nutrients such as protein from the kernel and polyphenolic compounds from the seed coat. However, the influences of seed coat polyphenols on walnut protein (WP) hydrolysis remained unclear. In this study, our findings indicated that polyphenols induced alterations in the secondary structure and amino acid composition of WP. These changes resulted in both a hindrance of hydrolysis and an enhancement of acetylcholinesterase (AChE) inhibition. Furthermore, four peptides of 119 identified peptides (LR, SF, FQ, and FR) were synthesized based on higher predicted bioactivity and Vinascores in silico. Among them, FQ showed interaction with amino acid residues in AChE through the formation of four π-π stacking bonds and two hydrogen bonds, resulting in the highest AChE inhibitory capacity. The combination index showed that chlorogenic acid derived from the seed coat and FQ at the molar ratio of 1:4 exhibited synergistic effects of AChE inhibition.
Collapse
Affiliation(s)
- Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jieqiong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Liuxin Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China.
| |
Collapse
|
4
|
Aita SE, Montone CM, Taglioni E, Capriotti AL. Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:275-325. [PMID: 38906589 DOI: 10.1016/bs.afnr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.
Collapse
Affiliation(s)
- Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
5
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Satchanska G, Davidova S, Gergova A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel) 2024; 13:202. [PMID: 38534637 DOI: 10.3390/antibiotics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Slavena Davidova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Alexandra Gergova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
7
|
Rodríguez M, Bianchi F, Simonato B, Rizzi C, Fontana A, Tironi VA. Exploration of grape pomace peels and amaranth flours as functional ingredients in the elaboration of breads: phenolic composition, bioaccessibility, and antioxidant activity. Food Funct 2024; 15:608-624. [PMID: 38099478 DOI: 10.1039/d3fo04494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This study evaluated the incorporation of two ingredients as a source of bioactive compounds: amaranth flour (AF) and grape pomace peels flour (GP) to improve the nutritional qualities and functional properties of a wheat bread, emphasising the revalorisation of agricultural residues from grape winemaking as an ethical and economically viable source of bioactive compounds. Specifically, wheat flour (WF) substitutions were carried out for the individual ingredients, replacing 20% WF (A20 bread) or 5% GP (GP5 bread) and a mixture of both ingredients 20% WF and 5% GP (A20GP5 bread), and the antioxidant potential of the breads was analysed. The effect of simulated gastrointestinal digestion (SGID) on the phenolic profile and antioxidant activity of the fortified breads was also investigated. The substitution of WF by AF or GP introduced several phenolic compounds, digestion increased the bioaccessibility of phenolic compounds and reshaped their phenolic composition profiles. The combined presence of AF and GP in the breads modified the phenolic compounds composition and improved their antioxidant activity after SGID. Interactions between the phenolic compounds and other AF components (possibly proteins) were observed, which could protect the phenols from degradation during SGID, allowing them to be released after SGID.
Collapse
Affiliation(s)
- Mariela Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900), La Plata, Argentina.
| | - Federico Bianchi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Corrado Rizzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET-Facultad de Ciencias Agrarias (FCA)-Universidad Nacional de Cuyo (IBAM-FCA-CONICET-UNCuyo); Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900), La Plata, Argentina.
| |
Collapse
|
8
|
Hamzalioglu A, Tagliamonte S, Gökmen V, Vitaglione P. Casein-phenol interactions occur during digestion and affect bioactive peptide and phenol bioaccessibility. Food Funct 2023; 14:9457-9469. [PMID: 37807936 DOI: 10.1039/d3fo02630b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Casein (CN) represents many proline residues that may bind polyphenols. Some evidence exists of CN-polyphenols interaction in model systems. The formation of such interactions upon digestion and the effects on CN digestibility and potential functionality due to the release of bioactive peptides are obscure. This study aimed to explore the interactions of CN with different phenol compounds under digestive conditions and monitor how they affect the bioaccessibility of phenol compounds and bioactive peptides. CN or CN hydrolysate and phenol compounds such as chlorogenic acid, ellagic acid, catechin, green tea extract, and tea extract, singularly or in combination with CN were digested in vitro. Total antioxidant capacity (TAC), degree of hydrolysis, and bioactive peptide formation were assessed in the samples collected through the digestion. The results showed that bioaccessible TAC was 1.17 to 1.93-fold higher in CN co-digested with phenol compounds than initially due to a higher release of antioxidant peptides in the presence of phenolic compounds. However, TAC values in the intestinal insoluble part of CN-phenol digests were higher than the initial, indicating that such interactions may be functional to transport phenols to the colon. Bioactive peptide release was affected by the phenol type (catechins were the most effective) as well as phenol concentration. As an opioid peptide released from β-CN, β-casomorphin formation was significantly influenced by the co-digestion of CN with phenol compounds. This study confirmed the possible CN-phenol interaction during digestion, affecting bioactive peptide release.
Collapse
Affiliation(s)
- Aytul Hamzalioglu
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Naples, Italy.
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples, 80055 Portici, Naples, Italy.
| |
Collapse
|
9
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
10
|
Sánchez-Velázquez OA, Luna-Vital DA, Morales-Hernandez N, Contreras J, Villaseñor-Tapia EC, Fragoso-Medina JA, Mojica L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front Nutr 2023; 10:1169675. [PMID: 37538927 PMCID: PMC10395131 DOI: 10.3389/fnut.2023.1169675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The milpa system is a biocultural polyculture technique. Heritage of Mesoamerican civilizations that offers a wide variety of plants for food purposes. Corn, common beans, and pumpkins are the main crops in this agroecosystem, which are important for people's nutritional and food security. Moreover, milpa system seeds have great potential for preventing and ameliorating noncommunicable diseases, such as obesity, dyslipidemia, type 2 diabetes, among others. This work reviews and analyzes the nutritional and health benefits of milpa system seeds assessed by recent preclinical and clinical trials. Milpa seeds protein quality, vitamins and minerals, and phytochemical composition are also reviewed. Evidence suggests that regular consumption of milpa seeds combination could exert complementing effect to control nutritional deficiencies. Moreover, the combination of phytochemicals and nutritional components of the milpa seed could potentialize their individual health benefits. Milpa system seeds could be considered functional foods to fight nutritional deficiencies and prevent and control noncommunicable diseases.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Norma Morales-Hernandez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jonhatan Contreras
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Elda Cristina Villaseñor-Tapia
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
11
|
López-Moreno M, Jiménez-Moreno E, Márquez Gallego A, Vera Pasamontes G, Uranga Ocio JA, Garcés-Rimón M, Miguel-Castro M. Red Quinoa Hydrolysates with Antioxidant Properties Improve Cardiovascular Health in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2023; 12:1291. [PMID: 37372021 DOI: 10.3390/antiox12061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, quinoa has been postulated as an emerging crop for the production of functional foods. Quinoa has been used to obtain plant protein hydrolysates with in vitro biological activity. The aim of the present study was to evaluate the beneficial effect of red quinoa hydrolysate (QrH) on oxidative stress and cardiovascular health in an in vivo experimental model of hypertension (HTN) in the spontaneously hypertensive rat (SHR). The oral administration of QrH at 1000 mg/kg/day (QrHH) showed a significant reduction in SBP from baseline (-9.8 ± 4.5 mm Hg; p < 0.05) in SHR. The mechanical stimulation thresholds did not change during the study QrH groups, whereas in the case of SHR control and SHR vitamin C, a significant reduction was observed (p < 0.05). The SHR QrHH exhibited higher antioxidant capacity in the kidney than the other experimental groups (p < 0.05). The SHR QrHH group showed an increase in reduced glutathione levels in the liver compared to the SHR control group (p < 0.05). In relation to lipid peroxidation, SHR QrHH exhibited a significant decrease in plasma, kidney and heart malondialdehyde (MDA) values compared to the SHR control group (p < 0.05). The results obtained revealed the in vivo antioxidant effect of QrH and its ability to ameliorate HTN and its associated complications.
Collapse
Affiliation(s)
- Miguel López-Moreno
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | | | - Antonio Márquez Gallego
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
| | - Gema Vera Pasamontes
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut), Universidad Rey Juan Carlos de Madrid (URJC), 28933 Alcorcón, Spain
- Unidad Asociada I+D+i al Instituto de Química Médica (IQM), Consejo Superior de Investigación Científicas (CSIC), 28006 Madrid, Spain
| | - José Antonio Uranga Ocio
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut), Universidad Rey Juan Carlos de Madrid (URJC), 28933 Alcorcón, Spain
| | - Marta Garcés-Rimón
- Grupo de Investigación en Biotecnología Alimentaria, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Marta Miguel-Castro
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
12
|
Becerra LD, Quintanilla-Carvajal MX, Escobar S, Ruiz RY. Correlation between color parameters and bioactive compound content during cocoa seed transformation under controlled process conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
Tagliamonte S, De Luca L, Donato A, Paduano A, Balivo A, Genovese A, Romano R, Vitaglione P, Sacchi R. A ‘Mediterranean ice-cream’: Sensory and nutritional aspects of replacing milk cream with extra virgin olive oil. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
14
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
15
|
Chen HJ, Dai FJ, Chen CY, Fan SL, Zheng JH, Chau CF, Lin YS, Chen CS. Effects of molecular weight fraction on antioxidation capacity of rice protein hydrolysates. Sci Rep 2023; 13:3464. [PMID: 36859456 PMCID: PMC9977952 DOI: 10.1038/s41598-022-14314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/06/2022] [Indexed: 03/03/2023] Open
Abstract
Rice protein was used as a starting material to provide rice protein hydrolysates (RPH) through enzyme-assisted extraction. RPH was further fractionated using ultrafiltration membrane (UF) and classified by molecular weight (MW; MW < 1 kDa, MW 1-10 kDa, and MW > 10 kDa). Peptides with MW < 1 kDa possessed superior antioxidant properties (p < 0.05). Therefore, UF demonstrated great efficacy in selectively separating antioxidant peptides. A Pearson correlation analysis revealed that the total phenolic concentration was correlated with oxygen radical absorbance capacity (ORAC; r = 0.999, p < 0.05). Amino acid contents had negative correlations with the scavenging activity (specifically, IC50) of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (r = - 0.986 to - 1.000). Reducing power was related to aromatic amino acid contents (r = 0.997, p < 0.05). In this study, enzymatic hydrolysis was discovered to be an effective method of extracting and isolating natural antioxidant proteins from broken rice, thus preserving the nutritional quality of rice and making those proteins more accessible in future applications.
Collapse
Affiliation(s)
- Hui-Ju Chen
- grid.260542.70000 0004 0532 3749Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402204 Taiwan ,Healthmate Co., Ltd, Changhua, 500016 Taiwan
| | | | - Cheng-You Chen
- grid.412103.50000 0004 0622 7206Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli, 360302 Taiwan
| | | | - Ji-Hong Zheng
- grid.412103.50000 0004 0622 7206Department of Chemical Engineering, National United University, Miaoli, 360302 Taiwan
| | - Chi-Fai Chau
- grid.260542.70000 0004 0532 3749Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402204 Taiwan
| | - Yung-Sheng Lin
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli, 360302, Taiwan. .,Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan. .,Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402204, Taiwan.
| |
Collapse
|
16
|
Li K, Duan X, Zhou L, Hill DRA, Martin GJO, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from microalgae during in vitro digestion and colonic fermentation. Food Funct 2023; 14:899-910. [PMID: 36537586 DOI: 10.1039/d2fo02980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are a developing novel source of carbohydrates, phenolic compounds, carotenoids and proteins. In this study, in vitro digestion and colonic fermentation were conducted to examine the total phenolic content and potential antioxidant activity of four microalgal species (Chlorella sp., Spirulina sp., Dunaliella sp., and Isochrysis sp.). The bioaccessibility of targeted phenolic compounds and the short-chain fatty acid (SCFA) production were also estimated. Particularly, Spirulina sp. exhibited the highest total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl, DPPH) capacity after gastrointestinal digestion of 7.93 mg gallic acid equivalents (GAE) per g and 2.35 mg Trolox equivalents (TE) per g. Meanwhile, it had the highest total flavonoid content (TFC) of 1.07 quercetin equivalents (QE) per g after 8 h of colonic fermentation. Dunaliella sp. and Isochrysis sp. showed comparable ferric reducing antioxidant power (FRAP) of 4.96 and 4.45 mg QE per g after 4 h of faecal reaction, respectively. p-hydroxybenzoic and caffeic acid almost completely decomposed after the intestine and fermented in the colon with the gut microflora. In Dunaliella sp. and Isochrysis sp., these phenolic acids were found in the colonic fermented residual, probably due to the presence of dietary fibre and the interactions with other components. All four species reached the highest values of SCFA production after 16 h, except Spirulina sp., which displayed the most increased total SCFA production after 8 h of fermentation. It is proposed that Spirulina sp. could be more beneficial to gut health.
Collapse
Affiliation(s)
- Kunning Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Xinyu Duan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Linhui Zhou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
17
|
Cerrato A, Lammi C, Laura Capriotti A, Bollati C, Cavaliere C, Maria Montone C, Bartolomei M, Boschin G, Li J, Piovesana S, Arnoldi A, Laganà A. Isolation and functional characterization of hemp seed protein-derived short- and medium-chain peptide mixtures with multifunctional properties for metabolic syndrome prevention. Food Res Int 2023; 163:112219. [PMID: 36596148 DOI: 10.1016/j.foodres.2022.112219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme. The short-chain peptide mixture was also two times more active as a dipeptidyl peptidase IV, and twofold more active on the cholesterol metabolism pathway through the modulation of low-density lipoprotein receptor.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
18
|
Rebollo-Hernanz M, Bringe NA, Gonzalez de Mejia E. Selected Soybean Varieties Regulate Hepatic LDL-Cholesterol Homeostasis Depending on Their Glycinin:β-Conglycinin Ratio. Antioxidants (Basel) 2022; 12:20. [PMID: 36670883 PMCID: PMC9855081 DOI: 10.3390/antiox12010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Clinical studies indicate that the consumption of soybean protein might reduce cholesterol and LDL levels preventing the development of atherosclerotic cardiovascular diseases. However, soybean variety can influence soybean protein profile and therefore affect soybean protein health-promoting properties. This study investigated the composition and effects of nineteen soybean varieties digested under simulated gastrointestinal conditions on hepatic cholesterol metabolism and LDL oxidation in vitro. Soybean varieties exhibited a differential protein hydrolysis during gastrointestinal digestion. Soybean varieties could be classified according to their composition (high/low glycinin:β-conglycinin ratio) and capacity to inhibit HMGCR (IC50 from 59 to 229 µg protein mL−1). According to multivariate analyses, five soybean varieties were selected. These soybean varieties produced different peptide profiles and differently reduced cholesterol concentration (43−55%) by inhibiting HMGCR in fatty-acid-stimulated HepG2 hepatocytes. Selected digested soybean varieties inhibited cholesterol esterification, triglyceride production, VLDL secretion, and LDL recycling by reducing ANGPTL3 and PCSK9 and synchronously increasing LDLR expression. In addition, selected soybean varieties hindered LDL oxidation, reducing the formation of lipid peroxidation early (conjugated dienes) and end products (malondialdehyde and 4-hydroxynonenal). The changes in HMGCR expression, cholesterol esterification, triglyceride accumulation, ANGPTL3 release, and malondialdehyde formation during LDL oxidation were significantly (p < 0.05) correlated with the glycinin:β-conglycinin ratio. Soybean varieties with lower glycinin:β-conglycinin exhibited a better potential in regulating cholesterol and LDL homeostasis in vitro. Consumption of soybean flour with a greater proportion of β-conglycinin may, consequently, improve the potential of the food ingredient to maintain healthy liver cholesterol homeostasis and cardiovascular function.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Munteanu IG, Grădinaru VR, Apetrei C. Development of a Chemically Modified Sensor Based on a Pentapeptide and Its Application for Sensitive Detection of Verbascoside in Extra Virgin Olive Oil. Int J Mol Sci 2022; 23:ijms232415704. [PMID: 36555346 PMCID: PMC9778896 DOI: 10.3390/ijms232415704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their antioxidant and antimicrobial action in functional foods, beverages, and in some dermato-cosmetic products, olive phenolic compounds are also recognized for their role in the prevention of diabetes and inflammation, treatment of heart disease and, consequently, of the numerous chronic diseases mediated by the free radicals. In recent years, attention has increased, in particular, regarding one of the most important compound in extra virgin olive oil (EVOO) having glycosidic structure, namely verbocoside, due to the existence in the literature of numerous studies demonstrating its remarkable contribution to the prophylaxis and treatment of various disorders of the human body. The purpose of this study was the qualitative and quantitative determination of verbascoside in commercial EVOOs from different regions by means of a newly developed sensor based on a screen-printed carbon electrode (SPCE) modified with graphene oxide (GPHOX), on the surface of which a pentapeptide was immobilized by means of glutaraldehyde as cross-linking agent. The modified electrode surface was investigated using both Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. This newly developed sensor has shown a high sensibility compared to the unmodified electrode, a low detection limit (LOD) of up to 9.38 × 10-8 M, and a wide linearity range between 0.1 µM and 10.55 µM. The applicability of the modified sensor was confirmed by detecting verbascoside in ten different EVOOs samples using the cyclic voltammetry (CV) method, with very good results. The validation of the electroanalytical method was performed by using the standard addition method with very good recoveries in the range of 97.48-103.77%.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
20
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
21
|
Hernández‐García Y, Melgar‐Lalanne G, Téllez‐Medina DI, Ruiz‐May E, Salgado‐Cruz MDLP, Andrade‐Velásquez A, Dorantes‐Álvarez L, López‐Hernández D, Santiago Gómez MP. Scavenging peptides, antioxidant activity, and hypoglycemic activity of a germinated amaranth (
Amaranthus hypochondriacus
L.) beverage fermented by
Lactiplantibacillus plantarum. J Food Biochem 2022; 46:e14139. [DOI: 10.1111/jfbc.14139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Yazmín Hernández‐García
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | - Darío Iker Téllez‐Medina
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Eliel Ruiz‐May
- Red de Estudios Moleculares Avanzados Instituto de Ecología A.C. Clúster Científico y Tecnologico BioMimic® Veracruz Mexico
| | - Ma. de la Paz Salgado‐Cruz
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Amaury Andrade‐Velásquez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Lidia Dorantes‐Álvarez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | | |
Collapse
|
22
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
23
|
Effect of some traditional processing operations on the chemical, functional, antioxidant, glycaemic index and glycaemic load of groundnut (Arachis hypogea L.) seed flour. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Improvement of functional cake formulation with fermented soy (Glycine max) and lupin (Lupinus albus L) powders. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Pérez-Gregorio MR, Bessa Pereira C, Dias R, Mateus N, de Freitas V. New-Level Insights into the Effects of Grape Seed Polyphenols on the Intestinal Processing and Transport of a Celiac Disease Immunodominant Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13474-13486. [PMID: 34727499 DOI: 10.1021/acs.jafc.1c03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The effect of three dietary tannins (procyanidin B3, B6, and T2) on the bioavailability of the 32-mer gliadin-derived immunogenic peptide was evaluated. An enterocyte-like Caco-2 cell line was used to mimic the epithelial transport of the 32-mer peptide, which was modeled by kinetic parameters with a mass spectrometry approach. The hydrolysis pattern on the enterocytes was analyzed, and the released peptides were quantified during the assay. The transport flux was dose-dependent. Along with procyanidin T2 and B6, procyanidin B3 promoted a significant inhibition mainly at the 100 μM peptide concentration. The hydrolysis efficiency was affected by procyanidins, while the cleavage pattern was suggested to be promoted by brush-border membranes at the apical compartment. The ability of procyanidins to molecularly bind to immunogenic peptides able to induce an adaptive response arose as a mechanism able to modulate their bioavailability, bioaccesibility, and further T CD4+ cell activation and expansion in a celiac disease (CD) model.
Collapse
Affiliation(s)
- Maria Rosa Pérez-Gregorio
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Catarina Bessa Pereira
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Ricardo Dias
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugal
| |
Collapse
|
26
|
Alsadi N, Mallet JF, Matar C. miRNA-200b Signature in the Prevention of Skin Cancer Stem Cells by Polyphenol-enriched Blueberry Preparation. J Cancer Prev 2021; 26:162-173. [PMID: 34703819 PMCID: PMC8511576 DOI: 10.15430/jcp.2021.26.3.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure of the skin to solar UV radiation leads to inflammation, DNA damage, and dysregulation of cellular signaling pathways, which may cause skin cancer. Photochemoprevention with natural products is an effective strategy for the control of cutaneous neoplasia. Polyphenols have been proven to help prevent skin cancer and to inhibit the growth of cancer stem cells (CSCs) through epigenetic mechanisms, including modulation of microRNAs expression. Thus, the current study aimed to assess the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on expression of miRNAs and target proteins associated with different clinicopathological characteristics of skin cancer such as stemness, motility, and invasiveness. We observed that PEBP significantly inhibited the proliferation of skin CSCs derived from different melanoma cell lines, HS 294T and B16F10. Moreover, PEBP was able to reduce the formation of melanophores. We also showed that the expression of the CD133+ stem cell marker in B16F10 and HS294T cell lines was significantly decreased after treating the cells with PEBP in comparison to the NBJ and control groups. Importantly, tumor suppressors' miR-200s, involved in the regulation of the epithelial-to-mesenchymal transition and metastasis, were strikingly upregulated. In addition, we have shown that a protein target of the tumor suppressor miR200b, ZEB1, was also significantly modulated. Thus, the results demonstrates that PEBP possesses potent anticancer and anti-metastatic potentials and may represent a novel chemopreventative agent against skin cancer.
Collapse
Affiliation(s)
- Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
27
|
Yaskolka Meir A, Tuohy K, von Bergen M, Krajmalnik-Brown R, Heinig U, Zelicha H, Tsaban G, Rinott E, Kaplan A, Aharoni A, Zeibich L, Chang D, Dirks B, Diotallevi C, Arapitsas P, Vrhovsek U, Ceglarek U, Haange SB, Rolle-Kampczyk U, Engelmann B, Lapidot M, Colt M, Sun Q, Shai I. The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols. Nutrients 2021; 13:1866. [PMID: 34070816 PMCID: PMC8229908 DOI: 10.3390/nu13061866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach, 1, San Michele all’Adige, 38098 Trento, Italy; (K.T.); (C.D.); (P.A.); (U.V.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318 Leipzig, Germany; (M.v.B.); (S.-B.H.); (U.R.-K.); (B.E.)
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA;
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (U.H.); (A.A.)
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
| | - Ehud Rinott
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (U.H.); (A.A.)
| | - Lydia Zeibich
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (D.C.); (B.D.)
| | - Debbie Chang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (D.C.); (B.D.)
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (D.C.); (B.D.)
| | - Camilla Diotallevi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach, 1, San Michele all’Adige, 38098 Trento, Italy; (K.T.); (C.D.); (P.A.); (U.V.)
- Faculty of Science and Technology, Universitätsplatz 5-Piazza Università, 39100 Bozen-Bolzano, Italy
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach, 1, San Michele all’Adige, 38098 Trento, Italy; (K.T.); (C.D.); (P.A.); (U.V.)
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach, 1, San Michele all’Adige, 38098 Trento, Italy; (K.T.); (C.D.); (P.A.); (U.V.)
| | - Uta Ceglarek
- Institute for Laboratory Medicine, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318 Leipzig, Germany; (M.v.B.); (S.-B.H.); (U.R.-K.); (B.E.)
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318 Leipzig, Germany; (M.v.B.); (S.-B.H.); (U.R.-K.); (B.E.)
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, 04318 Leipzig, Germany; (M.v.B.); (S.-B.H.); (U.R.-K.); (B.E.)
| | - Miri Lapidot
- Research and Development Department, Hinoman Ltd., Rishon Lezion 7546302, Israel; (M.L.); (M.C.)
| | - Monica Colt
- Research and Development Department, Hinoman Ltd., Rishon Lezion 7546302, Israel; (M.L.); (M.C.)
| | - Qi Sun
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA;
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02118, USA
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (A.Y.M.); (H.Z.); (G.T.); (E.R.); (A.K.)
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
28
|
Ricardo D, Telmo F, Catarina BP, Nuno M, Victor DF, Rosa PG. Unravelling the effects of procyanidin on gliadin digestion and immunogenicity. Food Funct 2021; 12:4434-4445. [PMID: 33881102 DOI: 10.1039/d1fo00382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of procyanidin dimer B3, a common food tannin, on the digestion of gliadin proteins was investigated by monitoring the changes in the immunogenic peptides produced during in vitro digestion and immunoreactivity. Interaction studies between procyanidin dimer B3, gluten proteins and/or digestive enzymes were performed by SDS-PAGE. The effect of procyanidin B3 on the enzymatic activity of trypsin, chymotrypsin and pancreatin was evaluated. The differences in the number and nature of immunogenic peptides released during digestion were identified by mass spectrometry. Briefly, the enzymatic activity of gastrointestinal enzymes was only slightly affected but a significant decrease in the immunological properties of the peptides produced during digestion was observed. Overall, although further studies are needed, the interaction between polyphenols and gluten proteins clearly influences gluten protein digestion and immunogenicity, thus suggesting that the consumption of dietary polyphenols can significantly affect the degree of celiac disease downstream immune reactions.
Collapse
Affiliation(s)
- Dias Ricardo
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
29
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|