1
|
Zhao Q, Li C, Xu Y, Zhong J, Liu H, Yin Y, Liu Y, Yang C, Yu L, Liu L, Pan L, Tan B. Treadmill exercise supplemented by OPN promote axon regeneration through the IGF-1R/Akt/mTOR signaling pathway. Exp Neurol 2025; 385:115096. [PMID: 39657897 DOI: 10.1016/j.expneurol.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Regeneration of the corticospinal tract (CST) is considered a therapeutic target to achieve improved recovery of motor function after spinal cord injury (SCI), which is an incurable CNS damage that affects millions of people. Exercise training is effective in improving multiple functions in spinal cord-injured patients. However, the effects of exercise training on axon regeneration have not been sufficiently reported. Osteopontin (OPN) has great potential application as a neuroprotective agent for the repair of the nervous system. Studies have shown that the extent of axon regeneration strongly correlates with the expression of OPN. Our previous studies demonstrated that treadmill exercise supplemented by OPN enhances motor function recovery, but axon regeneration is still limited. Extending the treadmill exercise for 12 weeks, we observed promoted axon regeneration, motor function improvement, and signaling pathway activation in mice with SCI after supplementing OPN. Axon regeneration was observed with an anterograde tracer, motor function recovery was evaluated by animal ethology and electrophysiology, and the levels of IGF-1R/Akt/mTOR signaling pathway were evaluated. The results showed that the CST of C5 crushed mice regenerated and formed synaptic connections with neurons after treadmill exercise supplemented by OPN, the horizontal ladder and cylinder rearing test of injured limbs were improved, motor evoked potential also suggested enhanced nerve conduction, and the expression of p-IR, p-Akt, and p-S6 were increased. And the improvements were more obvious than that of the exercise group. Collectively, our study found that treadmill exercise supplemented by OPN promote axon regeneration and motor function through the IGF-1R/Akt/mTOR signaling pathways, and these improvements can be inhibited by rapamycin and Methyl-β-CD(M-B-CD).
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China; Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Ci Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Hongzhen Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Yuan Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Li Liu
- Department of Brain, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China.
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
2
|
Liu C, Li L, Li L, Li Q, Liu J, Zhang C, Cao Z, Ma L, Zeng X, Fu P. Ultrasmall magnolol/ebselen nanomicelles for preventing renal ischemia/reperfusion injury. Biomater Sci 2024; 12:4407-4426. [PMID: 39034872 DOI: 10.1039/d4bm00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Renal ischemia/reperfusion injury (RIRI) is an inevitable complication following kidney transplantation surgery, accompanied by the generation of a large amount of free radicals. A cascade of events including oxidative stress, extreme inflammation, cellular apoptosis, and thrombosis disrupts the microenvironment of renal cells and the hematological system, ultimately leading to the development of acute kidney injury (AKI). The current research primarily focuses on reducing inflammation and mitigating damage to renal cells through antioxidative approaches. However, studies on simultaneously modulating the renal hematologic system remain unreported. Herein, potent and novel drug-loaded nanomicelles can be efficiently self-assembled with magnolol (MG) and ebselen (EBS) by π-π conjugation, hydrophobic action and the surfactant properties of Tween-80. The ultrasmall MG/EBS nanomicelles (average particle size: 10-25 nm) not only fully preserve the activity of both drugs, but also greatly enhance drug utilization (encapsulation rates: MG: 90.1%; EBS: 49.3%) and reduce drug toxicity. Furthermore, EBS, as a glutathione peroxidase mimic and NO catalyst, combines with the multifunctional MG to scavenge free radicals and hydroperoxides, significantly inhibiting inflammation and thrombosis while effectively preventing apoptosis of vascular endothelial cells and renal tubular epithelial cells. This study provides a new strategy and theoretical foundation for the simultaneous regulation of kidney cells and blood microenvironment stability.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qingyin Li
- Department of Nephrology, Institute of Kidney Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Chunle Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhengjiang Cao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Xiaoxi Zeng
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Pai V, Bileck A, Hommer N, Janku P, Lindner T, Kauer V, Rumpf B, Haslacher H, Hagn G, Meier-Menches SM, Schmetterer L, Schmidl D, Gerner C, Garhöfer G. Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients. Sci Rep 2024; 14:8395. [PMID: 38600099 PMCID: PMC11006918 DOI: 10.1038/s41598-024-56834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.
Collapse
Affiliation(s)
- Viktoria Pai
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick Janku
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Theresa Lindner
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Victoria Kauer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Benedikt Rumpf
- Department of Medicine IV for Infectious Diseases and Tropical Medicine, Clinic Favoriten, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Vienna, Austria.
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. Oligosaccharides as Potential Therapeutics against Atherosclerosis. Molecules 2023; 28:5452. [PMID: 37513323 PMCID: PMC10386248 DOI: 10.3390/molecules28145452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
5
|
Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl 2023; 37:1243-1258. [PMID: 36217954 DOI: 10.1177/08853282221132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive studies, hydrogels are unable to meet the mechanical and biological requirements for successful outcomes in cartilage tissue engineering. In the present study, beta cyclodextrin (β-CD)-modified alginate/cartilage extracellular matrix (ECM)-based interpenetrating polymer network (IPN) hydrogel was developed for sustained release of Kartogenin (KGN). Furthermore, the hydrogel was incorporated within a 3D-printed poly (ε-caprolactone) (PCL)/starch microfiber network in order to reinforce the construct for cartilage tissue engineering. All the synthesized compounds were characterized by H1-NMR spectroscopy. The hydrogel/microfiber composite with a microfiber strand size and strand spacing of 300 μm and 2 mm, respectively showed a compressive modulus of 17.2 MPa, resembling the properties of the native cartilage tissue. Considering water uptake capacity, degradation rate, mechanical property, cell cytotoxicity and glycosaminoglycan secretions, β-CD-modified hydrogel reinforced with printed PCL/starch microfibers with controlled release of KGN may be considered as a promising candidate for using in articular cartilage defects.
Collapse
Affiliation(s)
- Sadaf Mohsenifard
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| | - Hanieh Safari
- Chemical and Petroleum Engineering Department, 68260Sharif University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Mekkawy AI, Fathy M, Mohamed HB. Evaluation of Different Surface Coating Agents for Selenium Nanoparticles: Enhanced Anti-Inflammatory Activity and Drug Loading Capacity. Drug Des Devel Ther 2022; 16:1811-1825. [PMID: 35719212 PMCID: PMC9205440 DOI: 10.2147/dddt.s360344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Inflammation is the keystone in the disease’s pathological process in response to any damaging stimuli. Therefore, any agent that inhibits the inflammatory response is under focus, either a drug or a bioactive compound. Selenium nanoparticles have drawn attention in various biomedical applications, including the anti-inflammatory activity. Purpose In the current study, we aimed to evaluate the capacity of different surface coating materials (soybean lecithin, PEG 6000, and β-cyclodextrin) to enhance the anti-inflammatory activity of the synthesized selenium nanoparticles (SeNPs). The capability of the coated SeNPs to adsorb indomethacin (IND) on their surfaces compared to the uncoated SeNPs was also evaluated. Methods SeNPs were synthesized, coated with different materials, and characterized in vitro using X-ray diffraction, UV-Vis spectrophotometer, FTIR, SEM, TEM, and particle size and zeta potential measurements. The in vivo anti-inflammatory activity of the uncoated/coated SeNPs loaded into hydrogel was evaluated using a carrageenan-induced paw edema rat model. The effect of SeNPs surface coatings was further evaluated for IND loading capacity. Results Our findings proved the superior anti-inflammatory activity of all coated SeNPs compared to the uncoated SeNPs, especially with β-cyclodextrin surface coating. Regarding the IND loading capacity of the prepared uncoated/coated SeNPs, the amount of drug loaded was 0.12, 1.12, 0.3, and 0.14 µg IND/µg SeNPs for the uncoated, lecithin-, PEG- and β-CD-coated SeNPs, respectively. Conclusion Surface functionalization of SeNPs can provide a synergistic therapeutic activity. Our results are promising for further investigation of the in vivo anti-inflammatory synergistic activity of the IND-loaded surface-coated SeNPs.
Collapse
Affiliation(s)
- Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
- Correspondence: Aml I Mekkawy, Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt, Email
| | - M Fathy
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hebatallah B Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|