1
|
Bereanu AS, Vintilă BI, Bereanu R, Codru IR, Hașegan A, Olteanu C, Săceleanu V, Sava M. TiO 2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm-Opportunities and Challenges. Microorganisms 2024; 12:684. [PMID: 38674628 PMCID: PMC11051735 DOI: 10.3390/microorganisms12040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Vicențiu Săceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
2
|
Rosa D, Abbasova N, Di Palma L. Titanium Dioxide Nanoparticles Doped with Iron for Water Treatment via Photocatalysis: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:293. [PMID: 38334564 PMCID: PMC10856646 DOI: 10.3390/nano14030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Iron-doped titanium dioxide nanoparticles are widely employed for photocatalytic applications under visible light due to their promising performance. Nevertheless, the manufacturing process, the role of Fe3+ ions within the crystal lattice of titanium dioxide, and their impact on operational parameters are still a subject of controversy. Based on these assumptions, the primary objective of this review is to delineate the role of iron, ascertain the optimal quantity, and elucidate its influence on the main photocatalysis parameters, including nanoparticle size, band gap, surface area, anatase-rutile transition, and point of zero charge. Moreover, an optimized synthesis method based on comprehensive data and insights from the existing literature is proposed, focusing exclusively on iron-doped titanium oxide while excluding other dopant variants.
Collapse
Affiliation(s)
- Domenico Rosa
- Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Via Eudossiana 18, 00184 Roma, Italy;
| | - Nigar Abbasova
- Department of Ecology, Azerbaijan University of Architecture and Construction, AZ1073 Baku, Azerbaijan;
| | - Luca Di Palma
- Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Via Eudossiana 18, 00184 Roma, Italy;
| |
Collapse
|
3
|
Li P, Kowalczyk D, Liessem J, Elnagar MM, Mitoraj D, Beranek R, Ziegenbalg D. Optimizing reaction conditions for the light-driven hydrogen evolution in a loop photoreactor. Beilstein J Org Chem 2024; 20:74-91. [PMID: 38264450 PMCID: PMC10804759 DOI: 10.3762/bjoc.20.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Photocatalytic hydrogen production from water is a promising way to fulfill energy demands and attain carbon emission reduction goals effectively. In this study, a loop photoreactor with a total volume of around 500 mL is presented for the photocatalytic hydrogen evolution using a Pt-loaded polymeric carbon nitride photocatalyst under 365 nm irradiation in the presence of sacrificial reducing agents. The fluid flow pattern of the developed photoreactor was characterized experimentally and the photon flux incident to the loop photoreactor was measured by chemical actinometry. The system displayed exceptional stability, with operation sustained over 70 hours. A design of experiment (DOE) analysis was used to systematically investigate the influence of key parameters - photon flux, photocatalyst loading, stirring speed, and inert gas flow rate - on the hydrogen generation rate. Linear relationships were found between hydrogen evolution rate and photon flux as well as inert gas flow rate. Photocatalyst loading and stirring speed also showed linear correlations, but could not be correctly described by DOE analysis. Instead, linear single parameter correlations could be applied. Notably, the loop photoreactor demonstrated an external photon efficiency up to 17 times higher than reported in literature studies, while scaling the reactor size by a factor of 10.
Collapse
Affiliation(s)
- Pengcheng Li
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Kowalczyk
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Liessem
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Mohamed M Elnagar
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dariusz Mitoraj
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Dirk Ziegenbalg
- Institute of Chemical Engineering, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
4
|
Zhai X, Chen M. A machine learning-based nano-photocatalyst module for accelerating the design of Bi 2WO 6/MIL-53(Al) nanocomposites with enhanced photocatalytic activity. NANOSCALE ADVANCES 2023; 5:4065-4073. [PMID: 37560433 PMCID: PMC10408574 DOI: 10.1039/d3na00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 08/11/2023]
Abstract
It is a great challenge to acquire novel Bi2WO6/MIL-53(Al) (BWO/MIL) nanocomposites with excellent catalytic activity by the trial-and-error method in the vast untapped synthetic space. The degradation rate of Rhodamine B dye (DRRhB) can be used as the main parameter to evaluate the catalytic activity of BWO/MIL nanocomposites. In this work, a machine learning-based nano-photocatalyst module was developed to speed up the design of BWO/MIL with desirable performance. Firstly, the DRRhB dataset was constructed, and four key features related to the synthetic conditions of BWO/MIL were filtered by the forward feature selection method based on support vector regression (SVR). Secondly, the SVR model with radical basis function for predicting the DRRhB of BWO/MIL was established with the key features and optimal hyperparameters. The correlation coefficients (R) between predicted and experimental DRRhB were 0.823 and 0.884 for leave-one-out cross-validation (LOOCV) and the external test, respectively. Thirdly, potential BWO/MIL nanocomposites with higher DRRhB were discovered by inverse projection, the prediction model, and virtual screening from the synthesis space. Meanwhile, an online web service (http://1.14.49.110/online_predict/BWO2) was built to share the model for predicting the DRRhB of BWO/MIL. Moreover, sensitivity analysis was brought into boosting the model's explainability and illustrating how the DRRhB of BWO/MIL changes over the four key features, respectively. The method mentioned here can provide valuable clues to develop new nanocomposites with the desired properties and accelerate the design of nano-photocatalysts.
Collapse
Affiliation(s)
- Xiuyun Zhai
- College of Intelligent Manufacturing, Hunan University of Science and Engineering Yongzhou 425100 Hunan China
| | - Mingtong Chen
- Public Experimental Teaching Center, Panzhihua University Panzhihua 617000 Sichuan China
| |
Collapse
|
5
|
Maity D, Bhaumik SK, Banerjee S. Contrasting luminescence in heparin and DNA-templated co-assemblies of dimeric cyanostilbenes: efficient energy transfer in heparin-based co-assemblies. Phys Chem Chem Phys 2023; 25:12810-12819. [PMID: 37129214 DOI: 10.1039/d3cp00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dimeric cationic cyanostilbenes with peripheral alkyl chains demonstrated aggregation in aqueous media depending on the length of the hydrophobic segment and produced luminescent spherical nano-assemblies in the case of long alkyl chain derivatives. In the presence of heparin, a bio-polyanion that is routinely used as an anticoagulant, the self-assembled structures obtained from the amphiphilic dimers showed the formation of higher-order structures whereas the non-assembling dimers exhibited heparin-induced supramolecular structure formation. In both cases, a significant enhancement in the emission was observed. This led to the detection of heparin in aqueous buffer, serum and plasma with a "turn-on" fluorescence response. Interestingly, these derivatives also exhibited luminescence variation in the presence of ctDNA. However, the response towards DNA was opposite to that observed in the case of heparin i.e., "turn-off'' fluorescence response. Notably, depending on the length of the alkyl segment, divergent DNA binding modes of these derivatives were observed. Due to their enhanced luminescence, the heparin-based co-assemblies were further explored as artificial light-harvesting systems exhibiting an efficient energy transfer process to embedded acceptor dyes with a high antenna effect.
Collapse
Affiliation(s)
- Dhananjoy Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| | - Shubhra Kanti Bhaumik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, India.
| |
Collapse
|
6
|
Espinosa R, Manríquez ME, Trejo-Valdez M, Tzompantzi F, Bustos AF, Ortiz-Islas E. Synthesis and characterization of V 2O 5-Ga 2O 3 photocatalysts and their application on the photocatalytic reduction of CO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54119-54129. [PMID: 36869945 DOI: 10.1007/s11356-023-26155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) to produce methanol (CH3OH) is a promising strategy for producing clean energy. The catalyst, the aqueous medium, and the UV light are key parameters for the formation of the most relevant pair (e-/h+) and the specific selectivity towards the desired product (methanol). The use of Ga2O3 and V2O5 in the photocatalytic reduction of CO2 to produce methanol has been little studied. However, the combination of these oxides is important to generate synergies and decrease the band energy, enhancing the photocatalytic activity in CO2 reduction. In this work, V2O5-Ga2O3 combined photocatalysts have been prepared and investigated for the photocatalytic reduction of CO2. These photocatalysts were characterized by spectroscopic and microscopic techniques. The results showed that textural properties such as surface area and morphology do not influence the photocatalytic activity. However, species such as Ga2p3/2 and Ga2p1/2 identified by XPS enhanced the photocatalytic activity, most likely due to the formation of vacancies and the reduction of the bandgap in the combined oxides, as compared to single oxides. The contribution of these factors in pair interactions (e-/h+) with CO2 to generate methanol is demonstrated.
Collapse
Affiliation(s)
- Rodrigo Espinosa
- Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE)-Instituto Politécnico Nacional, Col. Zacatenco, 07738, Ciudad de México, México
| | - Ma Elena Manríquez
- Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE)-Instituto Politécnico Nacional, Col. Zacatenco, 07738, Ciudad de México, México
| | - Martín Trejo-Valdez
- Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE)-Instituto Politécnico Nacional, Col. Zacatenco, 07738, Ciudad de México, México
| | - Francisco Tzompantzi
- Laboratorio de catálisis, Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340, Ciudad de México, México
| | - Adrián Farid Bustos
- Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE)-Instituto Politécnico Nacional, Col. Zacatenco, 07738, Ciudad de México, México
| | - Emma Ortiz-Islas
- Laboratorio de Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Col. La Fama, 14269, Ciudad de México, México.
| |
Collapse
|
7
|
Abstract
Photocatalytic oxidation is a technology developed in recent years for the degradation of indoor air pollutants. In this study, magnesium cement-based photocatalytic material (MPM) was prepared by loading TiO2 photocatalysts onto a SiO2-modified basic magnesium chloride whisker (BMCW) surface, and was subsequently sprayed evenly on the surface of putty powder to form a photocatalytic functional wall coating (PFWC) material. Then, by introducing Ag, visible light photocatalytic functional wall coating (VPFWC) materials were also prepared. The results show that TiO2 and SiO2 form Ti–O–Si bonds on the BMCW surface, and the PFWC presents a promising degradation effect, with a photocatalytic removal rate of 46% for gaseous toluene, under ultraviolet light for 3 h, and an MPM coating concentration of 439 g/m2. This is related to the surface structure of the functional coating, which is formed using putty powder and MPM. The visible light photocatalytic efficiency of the VPFWC increased as the spraying amount of the AgNO3 solution increased, up to 16.62 g/m2, and then decreased with further increasing. The gaseous toluene was degraded by 28% and 73% in 3 h, by the VPFWC, under visible light and ultraviolet light irradiation, respectively. In addition, the photocatalytic performance of the PFWC/VPFWC also showed excellent durability after being reused five times.
Collapse
|
8
|
Photodegradation of Congo Red by Modified P25-Titanium Dioxide with Cobalt-Carbon Supported on SiO2 Matrix, DFT Studies of Chemical Reactivity. Catalysts 2022. [DOI: 10.3390/catal12030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congo red is a hazardous material in the environment. The present work describes the synthesis of TiO2/CoC@SiO2-bipy (1) and TiO2/CoC@SiO2-phen (2) nanocomposites for the photodegradation of azo-dye Congo red (CR) dye in aqueous solution, by combining pure TiO2 with CoC@SiO2-bipy (s1) and CoC@SiO2-phen (s2) nanoparticles. The prepared nanocomposites were evaluated in term of photocatalytic activity rates in aqueous solution using CR. The nanocomposites TiO2/CoC@SiO2-bipy (1) and TiO2/CoC@SiO2-phen (2) were prepared from TiO2 (75%) and CoC@SiO2-bipy (s1) or CoC@SiO2-phen (s2) (25%) (weight ratio). Ultra-sonication and milling were used to prepare the heterogeneous nano catalysts. The pH, initial dye concentration, and catalyst dosage appeared to have a significant impact on the photocatalytic degradation performance. Molecular oxygen and other active species played a significant role in the photocatalyst degradation of CR with sunlight energy (UV-index 5.0). The chemical reactions were accelerated depending upon electrophilicity (ω) and energy gap (Eg) of azo dye species CR-N=N, CR-N=NH and CR=N-NH species which were calculated by density function theory (DFT). It can be concluded that the rate of electron–hole recombination of the TiO2 catalyst, when adding CoC@SiO2-bipy (s1) or CoC@SiO2-phen (s2), not only enhances the degradation but also effectively removes toxic dye molecules and their by-products. The newly prepared TiO2/CoC@SiO2-bipy (1) nanocomposites showed increased photocatalytic efficiency at low catalyst dose and faster rate of degradation of Congo red compared to TiO2/CoC@SiO2-phen (2) and TiO2 catalysts. The novel catalysts (1) and (2) can be easily separated by centrifugation and filtration, from the reaction mixture compared to TiO2.
Collapse
|
9
|
Chiappara C, Arrabito G, Ferrara V, Scopelliti M, Sancataldo G, Vetri V, Chillura Martino DF, Pignataro B. Improved Photocatalytic Activity of Polysiloxane TiO 2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10354-10365. [PMID: 34461725 PMCID: PMC8413002 DOI: 10.1021/acs.langmuir.1c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/27/2021] [Indexed: 05/24/2023]
Abstract
Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under 1 sun toward methylene blue. The resulting coatings, in particular the 35 wt % TiO2-loaded composites, show a photocatalytic degradation of about 80%, which was comparable to the equivalent amount of bare TiO2 and two-fold higher with respect to the corresponding composites not subjected to thermal treatment. These findings highlight the role of thermally induced bulk clustering in enhancing photoactive nanoparticle/polymer composite properties.
Collapse
Affiliation(s)
- Clara Chiappara
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM),
UdR of Palermo, Florence 50121, Italy
| | - Giuseppe Arrabito
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
| | - Vittorio Ferrara
- National
Interuniversity Consortium of Materials Science and Technology (INSTM),
UdR of Palermo, Florence 50121, Italy
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, Building 16, V.le delle Scienze, Palermo 90128, Italy
| | - Michelangelo Scopelliti
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
| | - Giuseppe Sancataldo
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
| | - Valeria Vetri
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
| | - Delia Francesca Chillura Martino
- National
Interuniversity Consortium of Materials Science and Technology (INSTM),
UdR of Palermo, Florence 50121, Italy
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, Building 16, V.le delle Scienze, Palermo 90128, Italy
| | - Bruno Pignataro
- Department
of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, Building 17, V.le delle Scienze, Palermo 90128, Italy
- National
Interuniversity Consortium of Materials Science and Technology (INSTM),
UdR of Palermo, Florence 50121, Italy
| |
Collapse
|
10
|
Lu G, Liu X, Zhang P, Xu S, Gao Y, Yu S. Preparation and Photocatalytic Studies on Nanocomposites of 4‐Hydroxylphenyl‐Substituted Corrole/TiO
2
towards Methyl Orange Photodegradation. ChemistrySelect 2021. [DOI: 10.1002/slct.202101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guifen Lu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Xudong Liu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Yongjie Gao
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| | - Siyuan Yu
- School of Chemistry and Chemical Engineering Jiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
11
|
Stroea L, Chibac-Scutaru AL, Melinte V. Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO 2 Nanoparticles with UV-Shielding Features. Polymers (Basel) 2021; 13:1318. [PMID: 33923812 PMCID: PMC8074198 DOI: 10.3390/polym13081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
The design of high-performance nanocomposites with improved mechanical, thermal or optical properties compared to starting polymers has generated special interest due to their use in a wide range of targeted applications. In the present work, polymer nanocomposites composed of polyurethane elastomers based on polycaprolactone or polycaprolactone/poly(ethylene glycol) soft segments and titanium dioxide (TiO2) nanoparticles as an inorganic filler were prepared and characterized. Initially, the surface of TiO2 nanoparticles was modified with (3-iodopropyl) trimethoxysilane as a coupling agent, and thereafter, the tertiary amine groups from polyurethane hard segments were quaternized with the silane-modified TiO2 nanoparticles in order to ensure covalent binding of the nanoparticles on the polymeric chains. In the preparation of polymer nanocomposites, two quaternization degrees were taken into account (1/1 and 1/0.5 molar ratios), and the resulting nanocomposite coatings were characterized by various methods (Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, thermogravimetric analysis, dynamic mechanical thermal analysis). The mechanical parameters of the samples evaluated by tensile testing confirm the elastomeric character of the polyurethanes and of the corresponding composites, indicating the obtaining of highly flexible materials. The absorbance/transmittance measurements of PU/TiO2 thin films in the wavelength range of 200-700 nm show that these partially block UV-A radiation and all UV-B radiation from sunlight and could possibly be used as UV-protective elastomeric coatings.
Collapse
Affiliation(s)
| | | | - Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (L.S.); (A.-L.C.-S.)
| |
Collapse
|
12
|
Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020. [DOI: 10.3390/catal10111334] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Photocatalytic organic synthesis/conversions and water treatment under visible light are a challenging task to use renewable energy in chemical transformations. In this review a brief overview on the mainly employed visible light photocatalysts and a discussion on the problems and advantages of Vis-light versus UV-light irradiation is reported. Visible light photocatalysts in the photocatalytic conversion of CO2, conversion of acetophenone to phenylethanol, hydrogenation of nitro compounds, oxidation of cyclohexane, synthesis of vanillin and phenol, as well as hydrogen production and water treatment are discussed. Some applications of these photocatalysts in photocatalytic membrane reactors (PMRs) for carrying out organic synthesis, conversion and/or degradation of organic pollutants are reported. The described cases show that PMRs represent a promising green technology that could shift on applications of industrial interest using visible light (from Sun) active photocatalysts.
Collapse
|