1
|
Xie L, Duan H, Chen K, Qi D, Li J. Bio-based flame retardant coatings for polyester/cotton fabrics with high physical properties using ammonium vinyl phosphonate-grafted chitosan complexes. Int J Biol Macromol 2024; 279:135318. [PMID: 39236957 DOI: 10.1016/j.ijbiomac.2024.135318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Polyester/cotton (T/C) blended fabrics are widely utilized in textile due to the dimensional stability and high elasticity provided by polyester, combined with the comfort and moisture absorption offered by cotton. However, simultaneously enhancing the flame retardancy and maintaining the physical properties of T/C blended fabrics for clothing and furniture applications remains a big challenge. This study introduces a bio-based flame-retardant coating using polyelectrolyte complexes (PEC) composed of ammonium vinyl phosphonate-grafted chitosan (AMVP-g-CS). The protonation degree of the PEC coating is controlled by adjusting the pH to solidify and stabilize the complex structure, preparing bio-based PEC flame retardant T/C blended fabric. Flame retardant analysis reveals that the coated fabrics achieved a limiting oxygen index of 30.5 % and a char length of 11 mm, indicating significantly improved flame retardancy. The combustible volatile substances are significantly reduced for the coated fabrics, achieving a gas-phase flame retardant effect, and forming an expansive char layer with thermal insulation and oxygen blocking properties. Importantly, physical analysis proves that the PEC deposition improved mechanical properties, satisfactory whiteness index and hand feeling of the fabrics. This work opens up a pragmatic and industrially feasible strategy for the development of CSs in the field of flame retardant coating.
Collapse
Affiliation(s)
- Lijin Xie
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huimin Duan
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kai Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Jiawei Li
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Eco-Dyeing and Finishing of Textile, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China.
| |
Collapse
|
2
|
Wu P, Jiao Y, Wu W, Meng C, Cui Y, Qu H. Flame retardancy and smoke suppression properties of bio-based chitosan polyelectrolyte flame retardant containing P and N in epoxy resin. Int J Biol Macromol 2024; 279:135001. [PMID: 39182868 DOI: 10.1016/j.ijbiomac.2024.135001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This study reports the successful synthesis of flame-retardant and smoke-suppressing epoxy resin (EP) via bio-based polyelectrolyte flame retardants. Herein, a novel polyelectrolyte flame retardant was prepared from chitosan (CS) and hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene (HCPCP) by acid-base neutralization reaction, which the HCPCP was synthesized with hexachlorocyclotriphosphazene (HCCP) and methyl p-hydroxybenzoate (MP) by nucleophilic substitution reaction. The combined effect of the addition on the flame retardant, smoke suppression and mechanical properties of EP samples were systematically investigated. The presence of this bio-based polyelectrolyte provided excellent smoke suppression and flame-retardant properties of the prepared EP. Among them, the peak heat release rate (PHRR), peak smoke production rate (PSPR) and total smoke production (TSP) of EP/9wt%3CS-HCPCP composite (the ratio of CS to HCPCP was 3: 7, and the dosage was 9 wt%) were reduced by 45.42 %, 41.66 % and 22.56 %, respectively. In addition, the EP/CS-HCPCP composites showed a 207.80 % enhancement in char residue compared to pure EP. These results suggest a green and cost-effective strategy for the production of flame-retardant, drip-proof and smoke-suppressed EP composites.
Collapse
Affiliation(s)
- Pengxin Wu
- The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yunhong Jiao
- The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Weihong Wu
- College of Science, Agriculture University of Hebei, Baoding 071000, China
| | - Chunhui Meng
- The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yumeng Cui
- The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongqiang Qu
- The Flame-Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Merijs-Meri R, Zicans J, Ivanova T, Mezule L, Ivanickins A, Bockovs I, Bitenieks J, Berzina R, Lebedeva A. Melt-Processed Polybutylene-Succinate Biocomposites with Chitosan: Development and Characterization of Rheological, Thermal, Mechanical and Antimicrobial Properties. Polymers (Basel) 2024; 16:2808. [PMID: 39408518 PMCID: PMC11478647 DOI: 10.3390/polym16192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The current research is devoted to the development and characterization of green antimicrobial polymer biocomposites for food packaging applications. The biocomposites were developed by melt compounding on the basis of two different succinate polymer matrices with varying chain stiffness-polybutylene succinate (PBS) or its copolymer with 20 mol.% of polybutylene adipate (PBSA). Fungi chitosan oligosaccharide (C98) and crustacean chitosan (C95) were used as antimicrobial additives. The rheological properties of the developed biocomposites were determined to clear out the most suitable temperature for melt processing. In addition, mechanical, thermal, barrier and antimicrobial properties of the developed biocomposites were determined. The results of the investigation revealed that PBSA composites with 7 wt% and 10 wt% of the C98 additive were more suitable for the development of green packaging films because of their higher ultimate elongation values, better damping properties as well as their superior anti-microbial behavior. However, due to the lower thermal stability of the C98 additive as well as PBSA, the melt processing temperatures of the composites desirably should not exceed 120 °C. Additionally, by considering decreased moisture vapor barrier properties, it is recommended to perform further modifications of the PBSA-C98 composites through an addition of a nanoclay additive due to its excellent barrier properties and thermal stability.
Collapse
Affiliation(s)
- Remo Merijs-Meri
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Janis Zicans
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Tatjana Ivanova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Aleksandrs Ivanickins
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Ivan Bockovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Juris Bitenieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Rita Berzina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Alina Lebedeva
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| |
Collapse
|
4
|
Zhang J, Zhang X, Wang R, Wang W, Zhao H, Yang S, Dong Z, Wang DY, Pan YT. Cyclodextrin-based host-guest hierarchical fire retardants: Synthesis and novel strategy to endow polylactic acid fire retardancy and UV resistance. Carbohydr Polym 2024; 341:122313. [PMID: 38876722 DOI: 10.1016/j.carbpol.2024.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
β-Cyclodextrin (β-CD) with a cage-like supramolecular structure possesses the hydrophobic internal ring and external hydroxyl groups, which are beneficial for intramolecular interactions known as "host-guest" chemistry. This study presents a β-CD-based three-functions-in-one and host-guest fire retardant (βCD-MOF@Schiff base), which incorporates self-crosslinking Schiff base into its cavity and modification of its surface by metal-organic framework (MOF). With the presence of 5 wt% of βCD-MOF@Schiff base, the LOI value of PLA composites increased to 29 % and showed 15 %, 17 % and 62 % reductions in peak heat release rate (pHRR), total heat release (THR), and the yield of hazard gas carbon monoxide, respectively. The mode action of FR on fire retardation of PLA showed that the FR promoted the char formation with higher thermal stability and graphitization, and modified the decomposition path of PLA. Additionally, the PLA composites exhibited enhanced UV resistance in the UVA and UVB areas with improved UV absorbance and the UPF values improving and doubling. This work develops a new approach to preparing biodegradable FR, which simultaneously endows fire safety and anti-UV properties for PLA.
Collapse
Affiliation(s)
- Jing Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xiuqin Zhang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Rui Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Wenqing Wang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Hui Zhao
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Shuo Yang
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Zhenfeng Dong
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain.
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Kongkaew S, Srilikhit A, Janduang S, Thipwimonmas Y, Kanatharana P, Thavarungkul P, Limbut W. Single laser synthesis of gold nanoparticles-polypyrrole-chitosan on laser-induced graphene for ascorbic acid detection. Talanta 2024; 278:126446. [PMID: 38936107 DOI: 10.1016/j.talanta.2024.126446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous synthesis of gold nanoparticles (AuNPs) and graphene by laser ablation was demonstrated. The in-situ synthesis was performed by laser ablation of a polymer substrate covered with a gold precursor dispersion. The gold precursor was prepared in a copolymer solution of pyrrole (Py) and chitosan (Chi) to improve the nucleation of gold embedded on the laser-induced graphene electrode (LIGE). The morphology of AuNPs-pPy-Chi/LIGE was studied by scanning electron microscopy and characterized electrochemically by cyclic voltammetry. A comprehensive investigation of the electrochemical and physical features of the AuNPs-pPy-Chi/LIGE was carried out. The parameters of differential pulse voltammetry were adjusted to enhance the response to ascorbic acid (AA). The AuNPs-pPy-Chi/LIGE produced two linear ranges: from 0.25 to 5.00 and 5.00-25.00 mmol L-1. The limit of detection was 0.22 mmol L-1. Hundreds of electrodes were tested to demonstrate the excellent reproducibility of the AuNPs-pPy-Chi/LIGE fabrication. Overall, the proposed electrode allows the successful detection of AA in orange juice products with acceptable accuracy (recoveries = 97 ± 2 to 109.1 ± 0.7). The preparation strategy of the proposed AuNPs-pPy-Chi/LIGE could be adapted to detect other compounds or biomarkers.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Angkana Srilikhit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Santipap Janduang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yudtapum Thipwimonmas
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
6
|
Wang Y, Gao J, Ma L, Ge H, Zhu G, Zhu Z. Full bio-based flame retardant towards multifunctional polylactic acid: Crystallization, flame retardant, antibacterial and enhanced mechanical properties. Int J Biol Macromol 2024; 280:135891. [PMID: 39307504 DOI: 10.1016/j.ijbiomac.2024.135891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The preparation of flame-retardant high-performance polylactic acid (PLA) composites by adding green flame retardants have always been a challenge. In this work, an intumescent flame-retardant PCR based on phytic acid, chitosan, and resveratrol was successfully designed. Adding 4 wt% of PCR, the PLA-PCR composite was classified as UL-94 V-0 grade, with a LOI value increasing from 19.7 % (pure PLA) to 26.0 %, a peak heat release rate decreasing from 433 to 344 kW/m2. Owing to excellent compatibility of PCR, the mechanical strength and toughness of PLA-PCR composites have been improved, as reflected by a ~ 16 % increase in tensile strength, a ~ 73 % increase in impact strength and a ~ 57 % increase in toughness. In addition, PCR also presented plasticization effect on PLA, making it easier to process. This work provided a highly efficient and environmental-friendly modification approach for the development of multifunctional polymers.
Collapse
Affiliation(s)
- Yadong Wang
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China
| | - Jingjing Gao
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China
| | - Li Ma
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China
| | - Hui Ge
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China
| | - Guoping Zhu
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China
| | - Zongmin Zhu
- College of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
7
|
Tushar SI, Anik HR, Uddin MM, Mandal S, Mohakar V, Rai S, Sharma S. Nanocellulose-based porous lightweight materials with flame retardant properties: A review. Carbohydr Polym 2024; 339:122237. [PMID: 38823907 DOI: 10.1016/j.carbpol.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.
Collapse
Affiliation(s)
- Shariful Islam Tushar
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA; Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh; Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Md Mazbah Uddin
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| | - Sumit Mandal
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijay Mohakar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Smriti Rai
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Suraj Sharma
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| |
Collapse
|
8
|
Horathal Pedige M, Sugawara A, Uyama H. Multifunctional Chitosan Nanofiber-Based Sponge Materials Using Freeze-Thaw and Post-Cross-Linking Method. ACS OMEGA 2024; 9:36464-36474. [PMID: 39220476 PMCID: PMC11359632 DOI: 10.1021/acsomega.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The fabrication of porous sponge materials with stable structures via cross-linking diverse polymers presents significant challenges due to the simultaneous requirements for phase separation as a pore-forming step and cross-linking reactions during the fabrication process. To address these challenges, we developed a sponge material solely from natural-based polymers, specifically chitosan nanofibers (CSNFs) and dialdehyde carboxymethyl cellulose (DACMC), employing a straightforward, eco-friendly technique. This technique integrates a facile freeze-thaw method with subsequent cross-linking between CSNFs and DACMC. This method effectively addresses the difficulties associated with pore formation in materials, which typically arise from the rapid formation and precipitation of polyionic complexes during the mixing of anionic and cationic polymers, using ice crystals as a rigid template. The resultant sponge materials exhibit remarkable shape recoverability in their wet state and maintain light, stable porosity in the dry state. Furthermore, in comparison to commonly used commercial foams, this composite porous material demonstrates superior fire retardancy and thermal insulation properties in its dry state. Additionally, it shows effective adsorption capacities for both cationic and anionic dyes and metal ions. This method of using biobased polymers to produce porous composites offers a promising avenue for creating multifunctional materials, with potential applications across various industries.
Collapse
Affiliation(s)
| | - Akihide Sugawara
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Costa J, Baratto MC, Spinelli D, Leone G, Magnani A, Pogni R. A Novel Bio-Adhesive Based on Chitosan-Polydopamine-Xanthan Gum for Glass, Cardboard and Textile Commodities. Polymers (Basel) 2024; 16:1806. [PMID: 39000661 PMCID: PMC11244100 DOI: 10.3390/polym16131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan's solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation.
Collapse
Affiliation(s)
- Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Via del Gelso 13, 59100 Prato, Italy;
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Zhang X, Han L, Zhang H, Cai W, Wang X, Wang S, Gao Y, Liu X, Li Y, Zhang S. Multifunctional Bagasse Foam with Improved Thermal Insulation and Flame Retardancy by a Borax-Induced Self-Assembly and Ambient Pressure Drying Technique. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13611-13621. [PMID: 38456377 DOI: 10.1021/acsami.4c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cellulose foams are considered an effective alternative to plastic foam, because of their advantages of low density, high porosity, low thermal conductivity, and renewable nature. However, they still suffer from complex processing, poor mechanical properties, and flammability. As an agricultural waste, bagasse is rich in cellulose, which has attracted much attention. Inspired by the fact that borate ions can effectively enhance the strength of plant tissue by their cross-linking with polysaccharides, the present work designs and fabricates a series of multifunctional bagasse foams with robust strength and improved thermal insulation and flame retardancy via a unique borax-induced self-assembly and atmospheric pressure drying route using bagasse as a raw material, borate as a cross-linking agent, and chitosan as an additive. As a result, the optimized foam exhibits a high porosity (93.5%), a high hydrophobic water contact angle (150.4°), a low thermal conductivity (63.4 mW/(m·K) at 25 °C), and an outstanding flame retardancy. The present study provides a novel and inspiring idea for large-scale production of cellulose foams through an environmentally friendly and cost-effective approach.
Collapse
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lei Han
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Weijie Cai
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xinyue Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuang Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yabo Gao
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuefeng Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K
| |
Collapse
|
11
|
Li J, Zhang G, Zhang F. Phosphamide-Based Washing-Durable Flame Retardant for Cotton Fabrics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:630. [PMID: 38591487 PMCID: PMC10856145 DOI: 10.3390/ma17030630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 04/10/2024]
Abstract
A formaldehyde-free reactive flame retardant, an ammonium salt of triethylenetetramine phosphoryl dimethyl ester phosphamide phosphoric acid (ATPEPDPA), was synthesized and characterized using nuclear magnetic resonance (NMR). Fourier transform infrared spectroscopy test (FT-IR), durability test and scanning electron microscopy (SEM) results suggested that ATPEPDPA was successfully grafted on cotton fabrics through a -N-P(=O)-O-C covalent bond. Moreover, the limiting oxygen index (LOI) value of 20 wt% ATPEPDPA-treated cotton was 44.6%, which met stringent washing standard after 50 laundering cycles (LCs). The high washing resistance of the ATPEPDPA-treated cotton was due to the p-π conjugation between the N atom and the P(=O) group in the flame-retardant molecule, which strengthened the stability of the -N-P(=O)-O-C bonds between ATPEPDPA and cellulose, and the -N-P(=O)-(O-CH3)2 groups in the ATPEPDPA. The cone calorimetric test showed that the treated cotton had excellent flame retardance. In addition, the TG and TG-IR tests suggested that ATPEPDPA performed a condensed flame retardance mechanism. Furthermore, the physical properties and hand feel of the treated cotton were well maintained. These results suggested that introducing -N-P(=O)-(O-CH3)2 and -N-P(=O)-(ONH4)2 groups into ATPEPDPA could significantly increase the fire resistance and durability of cotton fabrics.
Collapse
Affiliation(s)
- Jinhao Li
- Institute of Bioorganic and Medicinal Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Guangxian Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fengxiu Zhang
- Institute of Bioorganic and Medicinal Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Tanpichai S, Pumpuang L, Srimarut Y, Woraprayote W, Malila Y. Development of chitin nanofiber coatings for prolonging shelf life and inhibiting bacterial growth on fresh cucumbers. Sci Rep 2023; 13:13195. [PMID: 37580357 PMCID: PMC10425451 DOI: 10.1038/s41598-023-39739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
The widespread usage of petroleum-based polymers as single-use packaging has had harmful effects on the environment. Herein, we developed sustainable chitin nanofiber (ChNF) coatings that prolong the shelf life of fresh cucumbers and delay the growth of pathogenic bacteria on their surfaces. ChNFs with varying degrees of acetylation were successfully prepared via deacetylation using NaOH with treatment times of 0-480 min and defibrillated using mechanical blending. With longer deacetylation reaction times, more acetamido groups (-NHCOCH3) in chitin molecules were converted to amino groups (-NH2), which imparted antibacterial properties to the ChNFs. The ChNF morphologies were affected by deacetylation reaction time. ChNFs deacetylated for 240 min had an average width of 9.0 nm and lengths of up to several μm, whereas rod-like structured ChNFs with a mean width of 7.3 nm and an average length of 222.3 nm were obtained with the reaction time of 480 min. Furthermore, we demonstrated a standalone ChNF coating to extend the shelf life of cucumbers. In comparison to the rod-like structured ChNFs, the 120 and 240-min deacetylated ChNFs exhibited a fibril-like structure, which considerably retarded the moisture loss of cucumbers and the growth rate of bacteria on their outer surfaces during storage. Cucumbers coated with these 120 and 240-min deacetylated ChNFs demonstrated a lower weight loss rate of ⁓ 3.9% day-1 compared to the uncoated cucumbers, which exhibited a weight loss rate of 4.6% day-1. This protective effect provided by these renewable ChNFs holds promising potential to reduce food waste and the use of petroleum-based packaging materials.
Collapse
Affiliation(s)
- Supachok Tanpichai
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
- Cellulose and Bio-Based Nanomaterials Research Group, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Laphaslada Pumpuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- International Joint Research Center On Food Security (IJC-FOODSEC), Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
13
|
Lam WS, Lam WH, Lee PF. The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2857. [PMID: 37049151 PMCID: PMC10096242 DOI: 10.3390/ma16072857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Chitosan is a biocompatible polymer with vast applications in pharmacology, medicine, paper making, agriculture, and the food industry due to its low toxicity. Chitosan also plays an important role in the sustainable environment since chitosan is able to absorb greenhouse gases, harmful organic matter, and heavy ions. Therefore, this paper conducts a bibliometric analysis of chitosan for sustainable development using the Scopus database from 1976 to 2023. A performance analysis on the 8002 documents was performed with Harzing's Publish or Perish. Science mapping was conducted using VOSviewer. The annual publication on chitosan for sustainable development showed an upward trend in recent years as the annual publication peaked in 2022 with 1178 documents with most of the documents being articles and published in journals. Material science, chemistry, and engineering are tightly related subject areas. China had the highest publication of 1560 total documents while the United States had the most impactful publication with 55,019 total citations, 68.77 citations per document, 77.6 citations per cited document, h-index 110, and g-index of 211. India had the largest international collaboration with 572 total link strength. "International Journal of Biological Macromolecules", "Carbohydrate Polymers", and "Polymers" have been identified as the top three source titles that publish the most documents on chitosan for sustainable development. The emerging trends in chitosan on sustainable development focus on the application of chitosan as an antibacterial agent and biosorbent for contaminants, especially in water treatment.
Collapse
Affiliation(s)
| | - Weng Hoe Lam
- Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Perak, Malaysia; (W.S.L.); (P.F.L.)
| | | |
Collapse
|
14
|
Cabrera-Barjas G, Jimenez R, Romero R, Valdes O, Nesic A, Hernández-García R, Neira A, Alejandro-Martín S, de la Torre AF. Value-added long-chain aliphatic compounds obtained through pyrolysis of phosphorylated chitin. Int J Biol Macromol 2023; 238:124130. [PMID: 36963553 DOI: 10.1016/j.ijbiomac.2023.124130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
In this work, chitin, as a biobased polymer, is used as a precursor to obtain a phosphorylated derivatives. The influence of the different degree of phosphorylation in chitin on pyrolysis pattern was investigated. In order to understand the pyrolysis mechanism and the potential application of phosphorylated chitins, the samples were pyrolyzed at different temperatures and analyzed by FTIR, SEM, and Py-GC/MS analysis. Moreover, the thermal degradation and the evolved gases during chitin degradation and its derivatives were measured. The results showed that phosphorylation of chitin decreased the thermal stability of biopolymer and significantly changed the pattern of pyrolysis compared to neat chitin. The production of long-chain hydrocarbons was detected during pyrolysis of phosphorylated chitin, whereas this was not the case with raw chitin. Those two effects were more pronounced as the degree of phosphorylation increased. Chitin with the degree of phosphorylation (DS 1.35) exhibited the highest selectivity (91 %) towards production of long-chain hydrocarbons (C12-C17) at 500 °C. Moreover, the obtained results allowed to propose, for the first time, the mechanism of pyrolysis of phosphorylated chitin.
Collapse
Affiliation(s)
- Gustavo Cabrera-Barjas
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Av. Cordillera 2634, Parque Industrial Coronel, Coronel, Biobío, Chile.
| | - Romel Jimenez
- Carbon and Catalysis Laboratory (CarboCat), Department of Chemical Engineering, Universidad de Concepción, Concepción, Chile
| | - Romina Romero
- Departamento Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile.
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, 12-14 Mike Petrovića Street, Belgrade, 11000, Serbia
| | - Ruber Hernández-García
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Andrónico Neira
- Department of Biological and Animal Science, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | | | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
15
|
Blilid S, Boundor M, Katir N, El Achaby M, Lahcini M, Majoral JP, Bousmina M, El Kadib A. Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Mohamed Boundor
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Mounir El Achaby
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| |
Collapse
|
16
|
Wang Y, Yuan J, Ma L, Yin X, Zhu Z, Song P. Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohydr Polym 2022; 298:120141. [DOI: 10.1016/j.carbpol.2022.120141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
|
17
|
Yadav A, de Souza FM, Dawsey T, Gupta RK. Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Anilkumar Yadav
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Felipe M. de Souza
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tim Dawsey
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Ram K. Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, Kansas 66762, United States
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
18
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|
19
|
Reynolds KJ, Zagho MM, Robertson M, Qiang Z, Nazarenko S. Environmental, Health, and Legislation Considerations for Rational Design of Nonreactive Flame-Retardant Additives for Polymeric Materials: Future Perspectives. Macromol Rapid Commun 2022; 43:e2200472. [PMID: 35835732 DOI: 10.1002/marc.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
Increasing polymer usage has demanded functional additives that decrease fire hazards for end users. While traditional flame-retardant (FR) additives, such as halogenated, phosphorus, and metal hydroxides, greatly reduce flammability and associated fire hazards, research has continually exposed a litany of health and environmental safety concerns. This perspective aims to identify the key components of a successful FR additive and address material, environmental, and health concerns of existing additives. Legislation surrounding FRs and persistent organic pollutants is also discussed to highlight political perception that has resulted in the increased chemical regulations and subsequent banning of FR additives. Finally, future directions of this field regarding nonreactive additives, focusing on the use of bioinspired materials and transition metal chemistries to produce alternatives for polymers with efficacies surpassing traditional additives are presented.
Collapse
Affiliation(s)
- Karina J Reynolds
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Moustafa M Zagho
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergei Nazarenko
- Department of Polymer Science and Engineering, Shelby F. Thames Polymer Science Research Center, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
20
|
Wu M, Yu G, Chen W, Dong S, Wang Y, Liu C, Li B. A pulp foam with highly improved physical strength, fire-resistance and antibiosis by incorporation of chitosan and CPAM. Carbohydr Polym 2022; 278:118963. [PMID: 34973778 DOI: 10.1016/j.carbpol.2021.118963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Bio-inspired borate cross-linked pulp foam (PF) with high porosity and low density can be widely used in many fields. However, PF is flammable, and lack of mechanical strength and antibacterial activity. To solve these issues, an ultra-strong PF was prepared by incorporation of chitosan and cationic polyacrylamide (CPAM). Results showed that the obtained PF exhibited highly improved mechanical properties (the compressive strength (485 kPa at a strain of 50%) was over 6 times higher compared with the borate cross-linked PF without chitosan and CPAM, and it was even higher than most of the reported cellulose-based porous materials). Also, the prepared PF has good performance on fire-retardance (hard to light), thermal insulation, antibiosis and sound absorption, due to the synergistic actions of borate, chitosan and CPAM. Additionally, spent liquor in preparing PF could be fully recycled, and thus this sustainable approach has potential for large-scale production of high-performance PF.
Collapse
Affiliation(s)
- Meiyan Wu
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Guang Yu
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Wei Chen
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yiran Wang
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Chao Liu
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Bin Li
- CAS Key Laboratory of Biofuels, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
21
|
|
22
|
|
23
|
Cho W, Shields JR, Dubrulle L, Wakeman K, Bhattarai A, Zammarano M, Fox DM. Ion – complexed chitosan formulations as effective fire-retardant coatings for wood substrates. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Jin X, Cui S, Sun S, Sun J, Zhang S. The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers (Basel) 2021; 13:3513. [PMID: 34685273 PMCID: PMC8536992 DOI: 10.3390/polym13203513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, a novel intumescent flame retardant (IFR) system was fabricated by the introduction of chitin as a green charring agent, ammonium polyphosphate (APP) as the acid source, and melamine (MEL) as the gas source. The obtained chitin-based IFR was then incorporated into a polylactic acid (PLA) matrix using melt compounding. The fire resistance of PLA/chitin composites was investigated via the limiting oxygen index (LOI), UL-94 vertical burning, and cone calorimeter (CONE) tests. The results demonstrated that the combination of 10%APP, 5%chitin and 5%MEL could result in a 26.0% LOI, a V-0 rating after UL and a 51.2% reduction in the peak heat release rate during the CONE test. Based on the mechanism analysis from both the morphology and the chemical structure of the char, it was suggested that chitin was a promising candidate as a charring agent for chitin reacted with APP and MEL with the formation of an intumescent layer on the surface.
Collapse
Affiliation(s)
- Xiaodong Jin
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Suping Cui
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Shibing Sun
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; (X.J.); (S.C.)
| | - Jun Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (S.Z.)
| | - Sheng Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (J.S.); (S.Z.)
| |
Collapse
|
25
|
Ababneh H, Hameed BH. Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. Int J Biol Macromol 2021; 186:314-327. [PMID: 34197858 DOI: 10.1016/j.ijbiomac.2021.06.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide biopolymer, one of the most abundant biowastes in the environment. This makes chitosan a potential material for a wide range of applications. To improve CS's properties, chitosan has to be chemically modified. Hydrothermal carbonization (HTC) is a sustainable process for converting chitosan to solid carbonized material. This article presents a review on the applications of hydrothermally treated chitosan in different fields such as water treatment, heavy metals adsorption, carbon dioxide capturing, solar cells, energy storage, biosensing, supercapacitors, and catalysis. Moreover, this review covers the impact of HTC process parameters on the properties of the produced carbon material. The diversity of applications indicates the great possibilities and multifunctionality of hydrothermally carbonized chitosan and its derivatives. The utilization of HTC-CS is expected to further expand as a result of the movement toward sustainable, environmentally-friendly resources. Thus, this review also recommends a few suggestions to improve the properties of HTC chitosan and its comprehensive applications.
Collapse
Affiliation(s)
- Hani Ababneh
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O Box: 2713, Doha, Qatar.
| |
Collapse
|
26
|
Pan Y, Liang Q, Song L, Zhao H. Fabrication of layer-by-layer self-assembled coating modified cotton fabric with flame retardancy and hydrophobicity based on sepiolite. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1904982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ying Pan
- Department of Environmental Science, Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Qianyong Liang
- Department of Environmental Science, Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Lei Song
- Department of Safety Science and Engineering, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, PR China
| | - Hongting Zhao
- Department of Environmental Science, Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, PR China
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, PR China
| |
Collapse
|
27
|
Sustainable Materials and their Contribution to the Sustainable Development Goals (SDGs): A Critical Review Based on an Italian Example. Molecules 2021; 26:molecules26051407. [PMID: 33807763 PMCID: PMC7961538 DOI: 10.3390/molecules26051407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs’ interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a “Sustainable Materials Partnership for SDGs” is envisaged for more suitable resource management in the future.
Collapse
|
28
|
Fang Y, Sun W, Li J, Liu H, Liu X. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int J Biol Macromol 2021; 175:140-146. [PMID: 33556399 DOI: 10.1016/j.ijbiomac.2021.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Polyester/cotton blend fabrics are widely used in clothing and household textiles which combine the comfort of cotton and excellent mechanical strength of polyester. However, their high flammability due to the special "wick effect" resulting from the different thermal decomposition process of cotton and polyester causes greatly potential fire hazards. In this study, fully bio-based intumescent flame retardant (IFR) coating of chitosan/phytic acid (CS/PA) was layer-by-layer (LBL) assembly constructed on polyester/cotton blend fabrics. The LOI value of polyester/cotton blend fabric which was LBL assembly coated by 20 bilayers CS/PA reached 29.2%. And the dripping of coated fabric was eliminated. The results of cone calorimetry test confirmed CS/PA coating greatly improved the flame retardancy of polyester/cotton blend fabrics. Thermogravimetric analysis (TGA) results showed CS/PA coating changed the thermal decomposition process to promote the char formation of polyester/cotton blend fabrics. CS/PA coating on fabric could form the IFR system which acts through both condensed phase action by the catalysis dehydration reaction to forming stable char and gas phase action by the blowing effect. This research provides a new strategy to eco-friendly flame retardant and dripping-resistant for polyester/cotton blend fabrics by bio-based IFR system through facile LBL assembly method.
Collapse
Affiliation(s)
- Yinchun Fang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; Technology Public Service Platform for Textile Industry of Anhui Province, Wuhu 241000, China.
| | - Weihao Sun
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Junwei Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hailong Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Xinhua Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China; Technology Public Service Platform for Textile Industry of Anhui Province, Wuhu 241000, China
| |
Collapse
|