1
|
Meng Y, Peplowski L, Wu T, Gong H, Gu R, Han L, Xia Y, Liu Z, Zhou Z, Cheng Z. A Versatile Protein Scaffold Engineered for the Hierarchical Assembly of Robust and Highly Active Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500405. [PMID: 39985242 DOI: 10.1002/advs.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/24/2025]
Abstract
Scaffold proteins play immense roles in bringing enzymes together to enhance their properties. However, the direct fusion of scaffold with bulky guest enzymes may disrupt the assembly process or diminish catalytic efficiency. Most self-assembling protein scaffolds are engineered to form structures beforehand, and then carry guest proteins via different conjugation strategies in vitro. Here, a robust self-assembling scaffold is presented, engineered from Methanococcus jannaschii using disulfide bonds, which efficiently assembles bulky enzymes into higher-order helices without additional chemistry or bio-conjugation in vitro. When fused directly with monomeric Endo-1,4-beta-xylanase A, the catalytic efficiency of the guest enzyme increased by 2.5 times with enhanced thermostability. Additionally, integrating the scaffold with the multimeric metalloenzyme nitrile hydratase overcame the typical stability-activity trade-off of such industrial enzyme, yielding three-fold higher activity and 28-fold higher thermostability. Structural analyses suggest that the artificially made helical twist structures create new interface interactions and provide a concentration of active sites of guest enzymes. Further fusion of fluorescent protein pairs with the scaffold exhibited a 12-fold higher FRET efficiency, suggesting its potential for dual-enzyme cascade applications. Overall, this study showcases a simple yet powerful protein scaffold that organizes guest enzymes into hierarchical structures with enhanced catalytic performance.
Collapse
Affiliation(s)
- Yiwei Meng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, Torun, 87-100, Poland
| | - Tong Wu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Heng Gong
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ran Gu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Liao M, Feng S, Liu X, Xu G, Li S, Bai Y, Luo H, Yao B, Wang H, Tu T. Novel Insights into Enzymatic Thermostability: The "Short Board" Theory and Zero-Shot Hamiltonian Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402441. [PMID: 39308285 PMCID: PMC11615740 DOI: 10.1002/advs.202402441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/23/2024] [Indexed: 12/06/2024]
Abstract
Understanding the mechanism underlying thermostabilization in naturally stable enzymes and enhancing the thermostability of unstable enzymes are crucial aspects in enzyme engineering. Despite the development of various engineering methods, there remains substantial scope for improvement. In this study, a novel concept termed as the "short board" theory is proposed, which conceptualizes proteins as barrels with each component representing a jagged board. Notably, optimizing modifications to the shortest board yields optimal enhancements in terms of thermostability performance. To validate this theory, α-amylase, an industrial bulk enzyme with multiple domains, is employed as a model enzyme. The existence of "short boards" and their impact on thermostability modification are demonstrated at the domain, residue, and atomic levels through experimental confirmation using domain substitution. Furthermore, a novel thermostable design and prediction model called Zero-Shot Hamiltonian (ZSH) is established and evaluated on α-amylase. This coevolutionary approach based on thermostability and deep learning exhibits remarkable success exclusively when applied to enzymes with fixed short boards. The integration of the "short board" theory with the ZSH model presents an innovative tool for enhancing enzymatic thermostability.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | | | - Xiaoqing Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Guoshun Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Sicong Li
- Hangzhou Levinthal Biotech Ltd.Zhejiang311200China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Haobo Wang
- Hangzhou Levinthal Biotech Ltd.Zhejiang311200China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
3
|
Feng C, Chen J, Ye W, Wang Z. Nitrile hydratase as a promising biocatalyst: recent advances and future prospects. Biotechnol Lett 2024; 46:1171-1185. [PMID: 39269672 DOI: 10.1007/s10529-024-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Fan S, Lü X, Wei X, Lü R, Feng C, Jin Y, Yan M, Yang Z. Computational design of α-amylase from Bacillus licheniformis to increase its activity and stability at high temperatures. Comput Struct Biotechnol J 2024; 23:982-989. [PMID: 38404709 PMCID: PMC10883975 DOI: 10.1016/j.csbj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
The thermostable α-amylase derived from Bacillus licheniformis (BLA) has multiple advantages, including enhancing the mass transfer rate and by reducing microbial contamination in starch hydrolysis. Nonetheless, the application of BLA is constrained by the accessibility and stability of enzymes capable of achieving high conversion rates at elevated temperatures. Moreover, the thermotolerance of BLA requires further enhancement. Here, we developed a computational strategy for constructing small and smart mutant libraries to identify variants with enhanced thermostability. Initially, molecular dynamics (MD) simulations were employed to identify the regions with high flexibility. Subsequently, FoldX, a computational design predictor, was used to design mutants by rigidifying highly flexible residues, whereas the simultaneous decrease in folding free energy assisted in improving thermostability. Through the utilization of MD and FoldX, residues K251, T277, N278, K319, and E336, situated at a distance of 5 Å from the catalytic triad, were chosen for mutation. Seventeen mutants were identified and characterized by evaluating enzymatic characteristics and kinetic parameters. The catalytic efficiency of the E271L/N278K mutant reached 184.1 g L-1 s-1, which is 1.88-fold larger than the corresponding value determined for the WT. Furthermore, the most thermostable mutant, E336S, exhibited a 1.43-fold improvement in half-life at 95 ℃, compared with that of the WT. This study, by combining computational simulation with experimental verification, establishes that potential sites can be computationally predicted to increase the activity and stability of BLA and thus provide a possible strategy by which to guide protein design.
Collapse
Affiliation(s)
- Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xudong Lü
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiyu Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Meng Y, Peplowski L, Wu T, Cheng Z, Han L, Qiao J, Cheng Z, Zhou Z. Multi-method analysis revealed the mechanism of substrate selectivity in NHase: A gatekeeper residue at the activity center. Int J Biol Macromol 2024; 279:135426. [PMID: 39251006 DOI: 10.1016/j.ijbiomac.2024.135426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Recognizing the critical need to elucidate the molecular determinants of this selectivity offers a pathway to engineer enzymes with broader and more versatile catalytic capabilities. Through integrated methods including phylogenetic analysis, molecular docking, and structural analysis, we identified a pivotal amino acid residue, αTrp116, linking the substrate binding pocket and the active site of a NHase from Pseudonocardia thermophila JCM 3095 (PtNHase). This residue acts as a crucial determinant of substrate specificity within the NHase enzyme. The mutant αW116R modified the substrate specificity of PtNHase, significantly enhancing its catalytic efficiency towards aromatic substrates. The catalytic activity for aromatic compounds such as 3-Cyanopyridine was 14-fold that of the wild-type, whereas its activity for aliphatic substrates diminished to one-sixth. MD simulations revealed that replacing αTrp116 with Arg allowed aromatic nitrile substrates to achieve more favorable conformations within the active site. Based on the mutant αW116R, we further constructed a combinatorial variant Pt-4, tailored for aromatic substrates, which exhibited an enzyme activity 50 times that of the wild-type. These results highlight the critical influence of amino acid residues in the enzyme's active site on substrate specificity and offer fresh perspectives and approaches for the evolution of enzymes.
Collapse
Affiliation(s)
- Yiwei Meng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Tong Wu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Qiao
- Ningbo Institute of Marine Medicine, Peking University, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| |
Collapse
|
6
|
Jiang S, Zhang Z, Gu Q, Yu X. Semi-rational design for enhancing thermostability of Culex pipiens acetylcholinesterase and sensitivity analysis of acephate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173282. [PMID: 38759926 DOI: 10.1016/j.scitotenv.2024.173282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Acetylcholinesterase (AChE) has emerged as a significant biological recognition element in the biosensor field, particularly for the detection of insecticides. Nevertheless, the weak thermostability of AChE restricts its utilization due to the complexities associated with production, storage, and application environments. By evaluating the binding affinity between representative AChE and insecticides, an AChE from Culex pipiens was screened out, which displayed a broad-spectrum and high sensitivity to insecticides. The C. pipiens AChE (CpA) was subsequently expressed in Escherichia coli (E. coli) as a soluble active protein. Furthermore, a three-point mutant, M4 (A340P/D390E/S581P), was obtained using a semi-rational design strategy that combined molecular dynamics (MD) simulation and computer-aided design, which exhibited a four-fold increase in half-life at 40 °C compared to the wild-type (WT) enzyme. The mutant M4 also demonstrated an optimal temperature of 50 °C and a melting temperature (Tm) of 51.2 °C. Additionally, the sensitivity of WT and M4 to acephate was examined, revealing a 50-fold decrease in the IC50 value of M4. The mechanism underlying the improvement in thermal performance was elucidated through secondary structure analysis and MD simulations, indicating an increase in the proportion of protein helices and local structural rigidity. MD analysis of the protein-ligand complexes suggested that the enhanced sensitivity of M4 could be attributed to frequent specific contacts between the organophosphorus (OP) group of acephate and the key active site residue Ser327. These findings have expanded the possibilities for the development of more reliable and effective industrial enzyme preparations and biosensors.
Collapse
Affiliation(s)
- Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| |
Collapse
|
7
|
Li X, Rahim K, Shen X, Cui X, Du C, Zhang G. Development of a Universal One-Step Purification and Activation Method to Engineer Protein-Glutaminase through Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10477-10486. [PMID: 38657166 DOI: 10.1021/acs.jafc.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cytotoxic enzymes often exist as zymogens containing prodomains to keep them in an inactive state. Protein-glutaminase (PG), which can enhance various functional characteristics of food proteins, is an enzyme containing pro-PG and mature-PG (mPG). However, poor activity and stability limit its application while tedious purification and activation steps limit its high-throughput engineering. Here, based on structural analysis, we replaced the linker sequence between pro-PG and mPG with the HRV3C protease recognition sequence and then coexpressed it with HRV3C protease in Escherichia coli to develop an efficient one-step purification and activation method for PG. We then used this method to obtain several mutants designed by a combination of computer-aided approach and beneficial point mutations. The specific activity (131.6 U/mg) of the best variant D1 was 4.14-fold that of the wild type, and t1/2 and T5010 increased by 13 min and 7 °C, respectively. D1 could effectively improve the solubility and emulsification of wheat proteins, more than twice the effect of the wild type. We also discussed the mechanism underlying the improved properties of D1. In summary, we not only provide a universal one-step purification and activation method to facilitate zymogen engineering but also obtain an excellent PG mutant.
Collapse
Affiliation(s)
- Xiaodi Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Shen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cui
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Xu SY, Chu RL, Liu HT, Weng CY, Wang YJ, Zheng YG. Computer-directed rational design enhanced the thermostability of carbonyl reductase LsCR for the synthesis of ticagrelor precursor. Biotechnol Bioeng 2024; 121:1532-1542. [PMID: 38265115 DOI: 10.1002/bit.28662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Carbonyl reductases are useful for producing optically active alcohols from their corresponding prochiral ketones. Herein, we applied a computer-assisted strategy to increase the thermostability of a previously constructed carbonyl reductase, LsCRM4 (N101D/A117G/F147L/E145A), which showed an outstanding activity in the synthesis of the ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. The stability changes introduced by mutations at the flexible sites were predicted using the computational tools FoldX, I-Mutant 3.0, and DeepDDG, which demonstrated that 12 virtually screened mutants could be thermally stable; 11 of these mutants exhibited increased thermostability. Then a superior mutant LsCRM4-V99L/D150F was screened out from the library that was constructed by iteratively combining the beneficial sites, which showed a 78% increase in activity and a 17.4°C increase in melting temperature compared to LsCRM4. Our computer-assisted design and combinatorial strategy dramatically increased the efficiency of thermostable enzyme production.
Collapse
Affiliation(s)
- Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Rong-Liang Chu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Chi H, Zhu X, Shen J, Lu Z, Lu F, Lyu Y, Zhu P. Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering. Appl Microbiol Biotechnol 2023; 107:2321-2333. [PMID: 36843197 DOI: 10.1007/s00253-023-12443-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Acrylamide alleviation in food has represented as a critical issue due to its neurotoxic effect on human health. L-Asparaginase (ASNase, EC 3.5.1.1) is considered a potential additive for acrylamide alleviation in food. However, low thermal stability hinders the application of ASNase in thermal food processing. To obtain highly thermal stable ASNase for its industrial application, a consensus-guided approach combined with site-directed saturation mutation (SSM) was firstly reported to engineer the thermostability of Mycobacterium gordonae L-asparaginase (GmASNase). The key residues Gly97, Asn159, and Glu249 were identified for improving thermostability. The combinatorial triple mutant G97T/N159Y/E249Q (TYQ) displayed significantly superior thermostability with half-life values of 61.65 ± 8.69 min at 50 °C and 5.12 ± 1.66 min at 55 °C, whereas the wild-type was completely inactive at these conditions. Moreover, its Tm value increased by 8.59 °C from parent wild-type. Interestingly, TYQ still maintained excellent catalytic efficiency and specific activity. Further molecular dynamics and structure analysis revealed that the additional hydrogen bonds, increased hydrophobic interactions, and favorable electrostatic potential were essential for TYQ being in a more rigid state for thermostability enhancement. These results suggested that our strategy was an efficient engineering approach for improving fundamental properties of GmASNase and offering GmASNase as a potential agent for efficient acrylamide mitigation in food industry. KEY POINTS: • The thermostability of GmASNase was firstly improved by consensus-guided engineering. • The half-life and Tm value of triple mutant TYQ were significantly increased. • Insight on improved thermostability of TYQ was revealed by MD and structure analysis.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Dong YQ, Shen JD, Pan L, Huang JH, Liu ZQ, Zheng YG. Mining and Characterization of Thermophilic Glucose Isomerase Based on Virtual Probe Technology. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04349-5. [PMID: 36696038 DOI: 10.1007/s12010-023-04349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Fructose, which is produced by the isomerization of glucose isomerase, is a crucial precursor for the biosynthesis of rare sugars. In this study, thermophilic glucose isomerases (GI) from Caldicellulosiruptor acetigenus (CAGI), Thermoanaerobacter thermocopriae (TTGI), and Thermotoga petrophila (TPGI) were screened from GenBank database by a virtual probe and were successfully expressed in Escherichia coli BL21(DE3). The results of characterization demonstrated that the optimal pH for CAGI and TTGI were 8.0 and were maintained at 80% in a slightly acidic environment. The relative residual activities of CAGI and TTGI were found to be 40.6% and 52.6%, respectively, following an incubation period of 24 h at 90 ℃. Furthermore, CAGI and TTGI exhibited superior catalytic performance that their reaction equilibrium both reached only after an hour at 85 ℃ with 200 g/L glucose, and the highest conversion rates were 54.2% and 54.1%, respectively. This study identifies competitive enzyme candidates for fructose production in the industry with appreciable cost reduction.
Collapse
Affiliation(s)
- Yu-Qi Dong
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Long Pan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Ji-Hong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China. .,Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China.
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
11
|
"Toolbox" construction of an extremophilic nitrile hydratase from Streptomyces thermoautotrophicus for the promising industrial production of various amides. Int J Biol Macromol 2022; 221:1103-1111. [PMID: 36108746 DOI: 10.1016/j.ijbiomac.2022.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Nitrile hydratase (NHase; EC 4.2.1.84) is widely used to synthesize the corresponding amides from nitriles, which is the most successful green biocatalyst. However, the limited acceptability of substrates and instability under harsh reaction conditions have hindered its widespread industrial application. Here, a gene encoding an extremophilic NHase from Streptomyces thermoautotrophicus (S.t NHase) was successfully overexpressed in Escherichia coli. The enzyme exhibited excellent thermostability, retaining >50 % of residual activity after heat treatment at 65 °C for 252 min. To further improve the catalytic performance of S.t NHase, semi-rational engineering of its substrate access tunnel was performed. A mutant βL48D showed a specific activity of 566.18 ± 18.86 U/mg towards 3-cyanopyridine, which was 7.7 times higher than its parent enzyme (73.80 ± 5.76 U/mg). Molecular dynamics simulation showed that the introduction of aspartic acid into βLeu48 resulted in a larger and more frequent opening of the substrate access tunnel entrance. On this basis, a "toolbox" containing various mutants on the substrate access tunnel was further established, whose catalytic activity towards various nitrile substrates was extensively improved, showing great potential for efficient synthesis of multiple high-value amides.
Collapse
|
12
|
Ma D, Cheng Z, Peplowski L, Han L, Xia Y, Hou X, Guo J, Yin D, Rao Y, Zhou Z. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci 2022; 13:8417-8428. [PMID: 35919716 PMCID: PMC9297474 DOI: 10.1039/d2sc02319a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
The narrow substrate scope limits the wide industrial application of enzymes. Here, we successfully broadened the substrate scope of a nitrile hydratase (NHase) through mutation of two tunnel entrance residues based on rational tunnel calculation. Two variants, with increased specific activity, especially toward bulky substrates, were obtained. Crystal structure analysis revealed that the mutations led to the expansion of the tunnel entrance, which might be conducive to substrate entry. More importantly, molecular dynamics simulations illustrated that the mutations introduced anti-correlated movements to the regions around the substrate tunnel and the active site, which would promote substrate access during the dynamic process of catalysis. Additionally, mutations on the corresponding tunnel entrance residues on other NHases also enhanced their activity toward bulky substrates. These results not only revealed that residues located at the enzyme surface were a key factor in enzyme catalytic performance, but also provided dynamic evidence for insight into enzyme substrate scope broadening.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun Grudziadzka 5 87-100 Torun Poland
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Xiaodong Hou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
- Jiangnan University (Rugao) Food Biotechnology Research Institute Rugao Jiangsu China
| |
Collapse
|
13
|
Vaishnav A, Kumar R, Singh HB, Sarma BK. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154170. [PMID: 35227717 DOI: 10.1016/j.scitotenv.2022.154170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, India; Agroecology and Environment, Agroscope (Reckenholz), Zürich 8046, Switzerland
| | - Roshan Kumar
- National Centre for Biological Sciences (TIFR-NCBS), Bengaluru 560065, India
| | | | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221110, India.
| |
Collapse
|
14
|
Chen M, Song F, Qin Y, Han S, Rao Y, Liang S, Lin Y. Improving Thermostability and Catalytic Activity of Glycosyltransferase From Panax ginseng by Semi-Rational Design for Rebaudioside D Synthesis. Front Bioeng Biotechnol 2022; 10:884898. [PMID: 35573234 PMCID: PMC9092651 DOI: 10.3389/fbioe.2022.884898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
As a natural sweetener and sucrose substitute, the biosynthesis and application of steviol glycosides containing the component rebaudioside D have attracted worldwide attention. Here, a glycosyltransferase PgUGT from Panax ginseng was first reported for the biosynthesis of rebaudioside D. With the three-dimensional structures built by homology modeling and deep-learning–based modeling, PgUGT was semi-rationally designed by FireProt. After detecting 16 site-directed variants, eight of them were combined in a mutant Mut8 with both improved enzyme activity and thermostability. The enzyme activity of Mut8 was 3.2-fold higher than that of the wild type, with an increased optimum reaction temperature from 35 to 40°C. The activity of this mutant remained over 93% when incubated at 35°C for 2 h, which was 2.42 times higher than that of the wild type. Meanwhile, when the enzymes were incubated at 40°C, where the wild type was completely inactivated after 1 h, the residual activity of Mut8 retained 59.0% after 2 h. This study would provide a novel glycosyltransferase with great potential for the industrial production of rebaudioside D and other steviol glycosides.
Collapse
Affiliation(s)
- Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fangwei Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuxi Qin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| |
Collapse
|
15
|
Han L, Liu X, Cheng Z, Cui W, Guo J, Yin J, Zhou Z. Construction and Application of a High-Throughput In Vivo Screening Platform for the Evolution of Nitrile Metabolism-Related Enzymes Based on a Desensitized Repressive Biosensor. ACS Synth Biol 2022; 11:1577-1587. [PMID: 35266713 DOI: 10.1021/acssynbio.1c00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription factor (TF)-based biosensors are expected to serve as powerful tools for the high-throughput screening of biocatalytic systems; however, most of them respond to ligands in a narrow concentration range, which limits their application. In this study, we constructed a heterogenous niacin biosensor using the repressive TF BsNadR and its target promoters from Bacillus subtilis. The fine-tunable output of the niacin biosensor was expanded to a wide range of niacin concentrations (0-50 mM) through desensitization engineering, which was suitable for the accurate identification of differences in enzyme activity. Structural mechanism analysis indicated that weakening the affinity of BsNadR with the ligand niacin and with DNA alters its regulatory properties. Based on the desensitized niacin biosensor, a high-throughput in vivo screening platform was developed for evolving nitrile metabolism-related enzymes. The evolved nitrilase, amidase, and nitrile hydratase with 6.6-, 2.1-, and 21.3-fold improvements in activity were achieved, respectively. In addition, these mutants also exhibited elevated activity toward other cognate substrates, indicating the broad applicability of the screening platform. This study not only provided a universal high-throughput screening platform for different nitrile metabolism-related enzymes but also demonstrated the advantages of repressive biosensors and the vital role of desensitization engineering of the TF in the development of high-throughput screening platforms for enzymes.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyue Liu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyi Cheng
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Cui
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junling Guo
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Yin
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Engineering of the thermophilic nitrile hydratase from Pseudonocardia thermophila JCM3095 for large-scale nicotinamide production based on sequence-activity relationships. Int J Biol Macromol 2021; 191:775-782. [PMID: 34592221 DOI: 10.1016/j.ijbiomac.2021.09.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
The green biocatalyst nitrile hydratase (NHase) is able to bio-transform 3-cyanopyridine into nicotinamide. As the NHase reaction is exothermic, an enzyme with high activity and stability is needed for nicotinamide production. In this study, we used sequence analysis and site-directed mutagenesis to generate a mutant of thermophilic NHase from Pseudonocardia thermophila JCM3095 with substantially enhanced activity and developed a powerful process for nicotinamide bio-production. The specific activity of αF126Y/αF168Y mutant was successfully increased by 3.98-fold over that of the wild-type enzyme. The half-life of such mutant was longer than 2 h, which was comparable to its parent enzyme. The relative activity of the αF126Y/αF168Y mutant after treatment with 1 M 3-cyanopyridine and 2 M nicotinamide was 73.2% and 63.7%, respectively, showing minor loss of its original stability. Structural analysis demonstrated that hydrogen bonds at the active site and α-β subunit interface of the NHase contribute to the improved activity and the maintenance of stability. Escherichia coli transformant harboring the mutant NHase was used for nicotinamide bio-production, yielding a nicotinamide productivity of 251.1 g/(L·h), which is higher than the productivity obtained using other NHase-containing strains and transformants. The newly established variant is therefore a promising alternative for the industrial production of nicotinamides.
Collapse
|
17
|
Cheng Z, Jiang S, Zhou Z. Substrate access tunnel engineering for improving the catalytic activity of a thermophilic nitrile hydratase toward pyridine and pyrazine nitriles. Biochem Biophys Res Commun 2021; 575:8-13. [PMID: 34454178 DOI: 10.1016/j.bbrc.2021.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Nitrile hydratase (NHase) is able to bio-transform nitriles into amides. As nitrile hydration being an exothermic reaction, a NHase with high activity and stability is needed for amide production. However, the widespread use of NHase for amide bio-production is limited by an activity-stability trade-off. In this study, through the combination of substrate access tunnel calculation, residue conservative analysis and site-saturation mutagenesis, a residue located at the substrate access tunnel entrance of the thermophilic NHase from extremophile Caldalkalibacillus thermarum TA2. A1, βLeu48, was semi-rationally identified as a potential gating residue that directs the enzymatic activity toward various pyridine and pyrazine nitriles. The specific activity of the corresponding mutant βL48H towards 3-cyanopyridine, 2-cyanopyridine and cyanopyrazine were 2.4-fold, 2.8-fold and 3.1-fold higher than that of its parent enzyme, showing a great potential in the industrial production of high-value pyridine and pyrazine carboxamides. Further structural analysis demonstrated that the βHis48 could form a long-lasting hydrogen bond with αGlu166, which contributes to the expansion of the entrance of substrate access tunnel and accelerate substrate migration.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shijin Jiang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, China.
| |
Collapse
|
18
|
Development of thermostable sucrose phosphorylase by semi-rational design for efficient biosynthesis of alpha-D-glucosylglycerol. Appl Microbiol Biotechnol 2021; 105:7309-7319. [PMID: 34542685 PMCID: PMC8494705 DOI: 10.1007/s00253-021-11551-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022]
Abstract
Abstract Sucrose phosphorylase (SPase) can specifically catalyze transglycosylation reactions and can be used to enzymatically synthesize α-D-glycosides. However, the low thermostability of SPase has been a bottleneck for its industrial application. In this study, a SPase gene from Leuconostoc mesenteroides ATCC 12,291 (LmSPase) was synthesized with optimized codons and overexpressed successfully in Escherichia coli. A semi-rational design strategy that combined the FireProt (a web server designing thermostable proteins), structure–function analysis, and molecular dynamic simulations was used to improve the thermostability of LmSPase. Finally, one single-point mutation T219L and a combination mutation I31F/T219L/T263L/S360A (Mut4) with improved thermostability were obtained. The half-lives at 50 °C of T219L and Mut4 both increased approximately two-fold compared to that of wild-type LmSPase (WT). Furthermore, the two variants T219L and Mut4 were used to produce α-D-glucosylglycerol (αGG) from sucrose and glycerol by incubating with 40 U/mL crude extracts at 37 °C for 60 h and achieved the product concentration of 193.2 ± 12.9 g/L and 195.8 ± 13.1 g/L, respectively, which were approximately 1.3-fold higher than that of WT (150.4 ± 10.0 g/L). This study provides an effective strategy for improving the thermostability of an industrial enzyme. Key points • Predicted potential hotspot residues directing the thermostability of LmSPase by semi-rational design • Screened two positive variants with higher thermostability and higher activity • Synthesized α-D-glucosylglycerol to a high level by two screened positive variants Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11551-0.
Collapse
|
19
|
Mikulska-Ruminska K, Anthonymuthu TS, Levkina A, Shrivastava IH, Kapralov AA, Bayır H, Kagan VE, Bahar I. NO ● Represses the Oxygenation of Arachidonoyl PE by 15LOX/PEBP1: Mechanism and Role in Ferroptosis. Int J Mol Sci 2021; 22:ijms22105253. [PMID: 34067535 PMCID: PMC8156958 DOI: 10.3390/ijms22105253] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
We recently discovered an anti-ferroptotic mechanism inherent to M1 macrophages whereby high levels of NO● suppressed ferroptosis via inhibition of hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) production by 15-lipoxygenase (15LOX) complexed with PE-binding protein 1 (PEBP1). However, the mechanism of NO● interference with 15LOX/PEBP1 activity remained unclear. Here, we use a biochemical model of recombinant 15LOX-2 complexed with PEBP1, LC-MS redox lipidomics, and structure-based modeling and simulations to uncover the mechanism through which NO● suppresses ETE-PE oxidation. Our study reveals that O2 and NO● use the same entry pores and channels connecting to 15LOX-2 catalytic site, resulting in a competition for the catalytic site. We identified residues that direct O2 and NO● to the catalytic site, as well as those stabilizing the esterified ETE-PE phospholipid tail. The functional significance of these residues is supported by in silico saturation mutagenesis. We detected nitrosylated PE species in a biochemical system consisting of 15LOX-2/PEBP1 and NO● donor and in RAW264.7 M2 macrophages treated with ferroptosis-inducer RSL3 in the presence of NO●, in further support of the ability of NO● to diffuse to, and react at, the 15LOX-2 catalytic site. The results provide first insights into the molecular mechanism of repression of the ferroptotic Hp-ETE-PE production by NO●.
Collapse
Affiliation(s)
- Karolina Mikulska-Ruminska
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| | - Tamil S. Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.A.); (H.B.)
| | - Anastasia Levkina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Indira H. Shrivastava
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Alexandr A. Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA; (T.S.A.); (H.B.)
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260, USA; (A.L.); (A.A.K.)
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, 119048 Moscow, Russia
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Correspondence: (K.M.-R.); (V.E.K.); (I.B.)
| |
Collapse
|
20
|
Effect and mechanism analysis of different linkers on efficient catalysis of subunit-fused nitrile hydratase. Int J Biol Macromol 2021; 181:444-451. [PMID: 33753198 DOI: 10.1016/j.ijbiomac.2021.03.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022]
Abstract
Protein fusion using a linker plays an important role for protein evolution. However, designing suitable linkers for protein evolution is yet challenging and under-explored. To further clarify the regular pattern of suitable type of linker for fusion proteins, one nitrile hydratase (NHase) was used as a target protein and subunit fusion strategy was carried out to improve its efficient catalysis. Subunit-fused variants with three different types of linkers were constructed and characterized. All variants exhibited higher stability than that of the wild type. The longer the linker was, the higher stability NHase showed, however, too long linker affected NHase activity and expression. Among the three types of linkers, the α-helical linker seemed more suitable for NHase than flexible or rigid linkers. Though it is not clear how the linkers affecting the activity, structure analysis indicated that the stability improvement is dependent on the additional salt bridge, H-bond, and the subunit interface area increasing due to the linker insertion, among which the additional salt bridge and interface area were more important factors. The results described here may be useful for redesigning other enzymes through subunit fusion.
Collapse
|