1
|
Kojima K, Wakabayashi Y, Nishijima S, Sakata J, Sekiya S, Iwamoto S, Tanaka K. Characterisation of glucose-induced protein fragments among the order Enterobacterales using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Biochem Biophys Res Commun 2024; 732:150407. [PMID: 39033555 DOI: 10.1016/j.bbrc.2024.150407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
To characterise the glucose-induced protein fragments by MALDI-TOF MS analysis, we compared data for samples from Escherichia coli cultured in media with or without glucose. Characteristic peaks were observed in the presence of glucose, and MS/MS revealed Asr-specific fragments. The amino acid sequences of the fragments suggested sequence-specific proteolysis. Blast-analysis revealed that numerous Enterobacterales harbored genes encoding Asr as well as E. coli. Here, we analysed 32 strains from 20 genera and 25 species of seven Enterobacterales families. We did not detect changes in the mass spectra of four strains of Morganellaceae lacking asr, whereas peaks of Asr-specific fragments were detected in the other 28 strains. We therefore concluded that the induction of Asr production in the presence of glucose is common among the Enterobacterales, except for certain Morganellaceae species. In members of family Budviciaceae, unfragmented Asr was detected. Molecular genetic information suggested that the amino acid sequences of Asr homologs are diverse, with fragments varying in number and size, indicating that Asr may serve as a discriminative biomarker for identifying Enterobacterales species.
Collapse
Affiliation(s)
- Koichi Kojima
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan.
| | - Yuki Wakabayashi
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Shunya Nishijima
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Junko Sakata
- Division of Bacteriology, Osaka Institute of Public Health, Osaka, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
2
|
Czeszewska-Rosiak G, Złoch M, Radosińska M, Florkiewicz AB, Tretyn A, Pomastowski P. The usefulness of the MALDI-TOF MS technique in the determination of dairy samples' microbial composition: comparison of the new EXS 2600 system with MALDI Biotyper platform. Arch Microbiol 2024; 206:172. [PMID: 38492038 DOI: 10.1007/s00203-024-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
This study compared the EXS 2600 system with the MALDI Biotyper for identifying microorganisms in dairy samples. Of the 196 bacterial isolates from milk, whey, buttermilk, cream, and dairy wastewater, the species and genus consistent identification between two systems showed 74% and 99%, respectively. However, the level of species identification rate exhibited a difference, which was higher in Zybio than in Bruker-76.0% and 66.8%, respectively. Notably, the EXS 2600 system performed better with certain yeast species and H. alvei, while the Biotyper excelled with Pseudomonas bacteria. Unique microbial compositions were found in 85% of dairy samples, with whey and buttermilk having the highest diversity. This research highlights the EXS 2600's potential as a reliable dairy microbial identification tool and underscores the need for a more diverse and comprehensive spectral database, despite the database's focus on clinical applications (as announced).
Collapse
Affiliation(s)
- Grażyna Czeszewska-Rosiak
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4 Str., 87-100, Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4 Str., 87-100, Toruń, Poland.
| | - Monika Radosińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4 Str., 87-100, Toruń, Poland
| | | | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1 Street, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4 Str., 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4 Str., 87-100, Toruń, Poland
| |
Collapse
|
3
|
Mametov R, Sagandykova G, Monedeiro F, Florkiewicz A, Piszczek P, Radtke A, Pomastowski P. Metabolic profiling of bacteria with the application of polypyrrole-MOF SPME fibers and plasmonic nanostructured LDI-MS substrates. Sci Rep 2024; 14:5562. [PMID: 38448652 PMCID: PMC10917794 DOI: 10.1038/s41598-024-56107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present application of innovative lab-made analytical devices such as plasmonic silver nanostructured substrates and polypyrrole-MOF solid-phase microextraction fibers for metabolic profiling of bacteria. For the first time, comprehensive metabolic profiling of both volatile and non-volatile low-molecular weight compounds in eight bacterial strains was carried out with utilization of lab-made devices. Profiles of low molecular weight metabolites were analyzed for similarities and differences using principal component analysis, hierarchical cluster analysis and random forest algorithm. The results showed clear differentiation between Gram positive (G+) and Gram negative (G-) species which were identified as distinct clusters according to their volatile metabolites. In case of non-volatile metabolites, differentiation between G+ and G- species and clustering for all eight species were observed for the chloroform fraction of the Bligh & Dyer extract, while methanolic fraction failed to recover specific ions in the profile. Furthermore, the results showed correlation between volatile and non-volatile metabolites, which suggests that lab-made devices presented in the current study might be complementary and therefore, useful for species differentiation and gaining insights into bacterial metabolic pathways.
Collapse
Affiliation(s)
- Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Fernanda Monedeiro
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-901, Brazil
| | - Aleksandra Florkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Pawel Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
4
|
Abeydeera N, Benin BM, Mudarmah K, Pant BD, Chen G, Shin WS, Kim MH, Huang SD. Harnessing the Dual Antimicrobial Mechanism of Action with Fe(8-Hydroxyquinoline) 3 to Develop a Topical Ointment for Mupirocin-Resistant MRSA Infections. Antibiotics (Basel) 2023; 12:antibiotics12050886. [PMID: 37237789 DOI: 10.3390/antibiotics12050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
8-Hydroxyquinoline (8-hq) exhibits potent antimicrobial activity against Staphylococcus aureus (SA) bacteria with MIC = 16.0-32.0 µM owing to its ability to chelate metal ions such as Mn2+, Zn2+, and Cu2+ to disrupt metal homeostasis in bacterial cells. We demonstrate that Fe(8-hq)3, the 1:3 complex formed between Fe(III) and 8-hq, can readily transport Fe(III) across the bacterial cell membrane and deliver iron into the bacterial cell, thus, harnessing a dual antimicrobial mechanism of action that combines the bactericidal activity of iron with the metal chelating effect of 8-hq to kill bacteria. As a result, the antimicrobial potency of Fe(8-hq)3 is significantly enhanced in comparison with 8-hq. Resistance development by SA toward Fe(8-hq)3 is considerably delayed as compared with ciprofloxacin and 8-hq. Fe(8-hq)3 can also overcome the 8-hq and mupirocin resistance developed in the SA mutant and MRSA mutant bacteria, respectively. Fe(8-hq)3 can stimulate M1-like macrophage polarization of RAW 264.7 cells to kill the SA internalized in such macrophages. Fe(8-hq)3 exhibits a synergistic effect with both ciprofloxacin and imipenem, showing potential for combination therapies with topical and systemic antibiotics for more serious MRSA infections. The in vivo antimicrobial efficacy of a 2% Fe(8-hq)3 topical ointment is confirmed by the use of a murine model with skin wound infection by bioluminescent SA with a reduction of the bacterial burden by 99 ± 0.5%, indicating that this non-antibiotic iron complex has therapeutic potential for skin and soft tissue infections (SSTIs).
Collapse
Affiliation(s)
- Nalin Abeydeera
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Bogdan M Benin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Khalil Mudarmah
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
- Department of Chemistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Bishnu D Pant
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| | - Songping D Huang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
5
|
Pauter-Iwicka K, Railean V, Złoch M, Pomastowski P, Szultka-Młyńska M, Błońska D, Kupczyk W, Buszewski B. Characterization of the salivary microbiome before and after antibiotic therapy via separation technique. Appl Microbiol Biotechnol 2023; 107:2515-2531. [PMID: 36843196 PMCID: PMC10033590 DOI: 10.1007/s00253-023-12371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/28/2023]
Abstract
In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis-as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles Our data can allow to monitor the treatment of bacterial diseases for patients.
Collapse
Affiliation(s)
- Katarzyna Pauter-Iwicka
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological&Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland.
| |
Collapse
|
6
|
Maślak E, Miśta W, Złoch M, Błońska D, Pomastowski P, Monedeiro F, Buszewski B, Mrochem-Kwarciak J, Bojarska K, Gabryś D. A New Approach to Imaging and Rapid Microbiome Identification for Prostate Cancer Patients Undergoing Radiotherapy. Biomedicines 2022; 10:biomedicines10081806. [PMID: 36009352 PMCID: PMC9405325 DOI: 10.3390/biomedicines10081806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Little is known about the impact of urinary microflora, in particular, its effects on side effects after radiotherapy. The use of mass spectrometry identification method (MALDI) may bring a new look at the issue of the composition and significance of the urinary microbiome. This study aimed to use the mass spectrometry identification method (MALDI) to identify the microbiome of urine samples collected from 50 irradiated prostate cancer patients. (2) Methods: Blood and urine samples were collected before gold marker implantation, at the start and last day of radiotherapy, 1, 4 months after. Patients do not always collect the urine from the midstream; therefore, samples were collected from the first void and midstream in 12 patients for MALDI analysis; in the remaining 38 patients—from the midstream void for MALDI and biochemical analysis. (3) Results: Microorganisms were present in 140/181 urine samples. We found 33 different species 3G(−) and 30G(+). The most frequently isolated strains were: Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus hominis, Enterococcus faecalis, and Micrococcus luteus. When comparing the type of urine samples, bacteria were more common in samples from the first-void urine than from the midstream one. The absence of bacteria was found in 12.2% of samples from the first-void urine and in 24.7% from the midstream. There was no difference in the total incidence of species between streams (p = 0.85). Before fiducial implantation, the total number of detected bacterial species was significantly higher in comparison to the end of radiotherapy (p = 0.038), indicating that the administered therapy resulted in depleting the local microbiome. One month after radiotherapy, an increase in the number of isolated bacteria was observed. The number of bacterial species in urine did not correlate with blood parameters. The presence of leukocytes (p = 0.013) and proteins (p = 0.004) in urine was related to a greater variety of bacteria found in urine specimens. (4) Conclusions: We obtained a similar spectrum of bacteria from the initial and middle urine streams. We also showed that there is a change in bacteria species affected by the treatment of prostate cancer patients, with both antibiotics before gold fiducial implantation and radiotherapy.
Collapse
Affiliation(s)
- Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Wioletta Miśta
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-102 Gliwice, Poland;
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
| | - Dominika Błońska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
| | - Fernanda Monedeiro
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (M.Z.); (D.B.); (P.P.); (F.M.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Jolanta Mrochem-Kwarciak
- Analytics and Clinical Biochemistry Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-102 Gliwice, Poland; (J.M.-K.); (K.B.)
| | - Katarzyna Bojarska
- Analytics and Clinical Biochemistry Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-102 Gliwice, Poland; (J.M.-K.); (K.B.)
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-102 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-278-80-51
| |
Collapse
|
7
|
Discrimination and Characterization of Escherichia coli Originating from Clinical Cases of Femoral Head Necrosis in Broilers by MALDI-TOF Mass Spectrometry Confirms Great Heterogeneity of Isolates. Microorganisms 2022; 10:microorganisms10071472. [PMID: 35889191 PMCID: PMC9323188 DOI: 10.3390/microorganisms10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli, a major pathogen in poultry production, is involved in femoral head necrosis (FHN) in broiler birds. So far, the characterization and relationship of isolates in context with this disease are mainly based on phenotypic and genotypic characteristics. Previously, an involvement of diverse E. coli isolates was reported. MALDI-TOF MS has been successfully applied investigating the clonality of different bacteria. Therefore, its application to characterize a well-defined selection of E. coli isolates beyond the species level was tested. The isolates were derived from clinical cases of FHN as well as from healthy birds. Reproducibility studies to perform a standardized protocol were done, and LB agar as well as the usage of fresh bacterial cultures proved most appropriate. No distinct clustering in context with the origin of isolates, association with lesions, serotype, or PFGE profile was found. Most of the isolates belonging to phylogroup B2 revealed a characteristic peak shift at 9716 m/z and could be attributed to the same MALDI-TOF MS cluster. The present study confirmed the previously found pheno- and genotypic heterogeneity of E. coli involved in FHN on the proteomic level. The study also highlights the need for standardized protocols when using MALDI-TOF MS for bacterial typing, especially beyond species level.
Collapse
|
8
|
Hong JS, Kim D, Jeong SH. Performance Evaluation of the IR Biotyper® System for Clinical Microbiology: Application for Detection of Staphylococcus aureus Sequence Type 8 Strains. Antibiotics (Basel) 2022; 11:antibiotics11070909. [PMID: 35884163 PMCID: PMC9311605 DOI: 10.3390/antibiotics11070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Methicillin-resistant S. aureus (MRSA) clonal lineages have been classified based on sequence type (ST) and pulsotype associated with human infection. Providing rapid and accurate epidemiological insight is important to address proper infection control in both community-acquired and nosocomial hospital settings. In this regard, this study was performed to evaluate the IR Biotyper® (IRBT®) for strain typing of S. aureus clinical isolates on three media. Methods: A total of 24 S. aureus clinical isolates comprising 15 MRSA isolates (six ST5, three ST72, three ST8, and three ST188 isolates) and nine methicillin-susceptible S. aureus (MSSA) isolates (three ST5, three ST72, and three ST8 isolates) were included for evaluating the IRBT®. Molecular characterization of all S. aureus isolates was performed by conventional PCR and sequencing methods. The IRBT® was evaluated according to manufacturer instructions and a modified sample procedure on commonly used BAP, MHA, and TSA media. Subsequently, the spectra obtained by IRBT® software were compared with dendrograms of PFGE analysis. Results: In this study, the modified sample procedure for reducing the amount of bacteria and bacterial concentration improved the acquisition quality pass rate of the IRBT®. Each spectrum of S. aureus ST5, ST72, and ST188 isolates on all three media could not be clustered by IRBT®. However, the dendrogram obtained from the spectra of S. aureus ST8 isolates on TSA medium were in concordance with that obtained by PFGE analysis. In addition, the visual distribution of S. aureus ST8 isolates on TSA medium in a 2D scatter plot appeared as separated point set from those of S. aureus ST5, ST72, and ST188 isolates. Conclusions: The IRBT® system is a rapid strain typing tool using the FTIR spectroscopic method. This system demonstrated the possibility of discriminating the strain types of S. aureus clinical isolates. Indeed, S. aureus ST8 isolates on TSA medium were successfully differentiated from other strain type isolates.
Collapse
Affiliation(s)
| | - Dokyun Kim
- Correspondence: ; Tel.: +82-10-8523-2692; Fax: +82-2-2019-4890
| | | |
Collapse
|
9
|
Ginsenoside 20(S)-Rh2 promotes cellular pharmacokinetics and intracellular antibacterial activity of levofloxacin against Staphylococcus aureus through drug efflux inhibition and subcellular stabilization. Acta Pharmacol Sin 2021; 42:1930-1941. [PMID: 34462563 PMCID: PMC8564512 DOI: 10.1038/s41401-021-00751-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Staphylococcus aureus (S. aureus) often causes clinical failure and relapse after antibiotic treatment. We previously found that 20(S)-ginsenoside Rh2 [20(S)-Rh2] enhanced the therapeutic effect of quinolones in a mouse model of peritonitis, which we attributed to the increased concentrations of quinolones within bacteria. In this study, we investigated the enhancing effect of 20(S)-Rh2 on levofloxacin (LVF) from a perspective of intracellular bacteria. In S. aureus 25923-infected mice, coadministration of LVF (1.5 mg/kg, i.v.) and 20(S)-Rh2 (25, 50 mg/kg, i.g.) markedly increased the survival rate, and decreased intracellular bacteria counts accompanied by increased accumulation of LVF in peritoneal macrophages. In addition, 20(S)-Rh2 (1, 5, 10 μM) dose-dependently increased the uptake and accumulation of LVF in peritoneal macrophages from infected mice without drug treatment. In a model of S. aureus 25923-infected THP-1 macrophages, we showed that 20(S)-Rh2 (1, 5, 10 μM) dose-dependently enhanced the intracellular antibacterial activity of LVF. At the cellular level, 20(S)-Rh2 increased the intracellular accumulation of LVF by inhibiting P-gp and BCRP. PK-PD modeling revealed that 20(S)-Rh2 altered the properties of the cell but not LVF. At the subcellular level, 20(S)-Rh2 did not increase the distribution of LVF in lysosomes but exhibited a stronger sensitizing effect in acidic environments. Molecular dynamics (MD) simulations showed that 20(S)-Rh2 improved the stability of the DNA gyrase-LVF complex in lysosome-like acidic conditions. In conclusion, 20(S)-Rh2 promotes the cellular pharmacokinetics and intracellular antibacterial activities of LVF against S. aureus through efflux transporter inhibition and subcellular stabilization, which is beneficial for infection treatment.
Collapse
|
10
|
Złoch M, Maślak E, Kupczyk W, Jackowski M, Pomastowski P, Buszewski B. Culturomics Approach to Identify Diabetic Foot Infection Bacteria. Int J Mol Sci 2021; 22:ijms22179574. [PMID: 34502482 PMCID: PMC8431627 DOI: 10.3390/ijms22179574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
The main goal of the study was to evaluate the usefulness of the culturomics approach in the reflection of diabetic foot infections (DFIs) microbial compositions in Poland. Superficial swab samples of 16 diabetic foot infection patients (Provincial Polyclinical Hospital in Toruń, Poland) were subjected to culturing using 10 different types of media followed by the identification via the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Biotyper platform. Identified 204 bacterial isolates representing 18 different species—mostly Enterococcus faecalis (63%) and Staphylococcus aureus (44%). Most of the infections (81%) demonstrated a polymicrobial character. Great differences in the species coverage, the number of isolated Gram-positive and Gram-negative bacteria, and the efficiency of the microbial composition reflection between the investigated media were revealed. The use of commonly recommended blood agar allowed to reveal only 53% of the entire microbial composition of the diabetic foot infection samples, which considerably improved when the chromagar orientation and vancomycin-resistant enterococi agar were applied. In general, efficiency increased in the following order: selective < universal < enriched < differential media. Performed analysis also revealed the impact of the culture media composition on the molecular profiles of some bacterial species, such as Corynebacterium striatum, Proteus mirabilis or Morganella morganii that contributed to the differences in the identification quality. Our results indicated that the culturomics approach can significantly improve the accuracy of the reflection of the diabetic foot infections microbial compositions as long as an appropriate media set is selected. The chromagar orientation and vancomycin-resistant enterococi agar media which were used for the first time to study diabetic foot infection microbial profiles demonstrate the highest utility in the culturomics approach and should be included in further studies directed to find a faster and more reliable diabetic foot infection diagnostic tool.
Collapse
Affiliation(s)
- Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (P.P.); (B.B.)
- Correspondence: ; Tel.: +48-56-611-60-60
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (P.P.); (B.B.)
| | - Wojciech Kupczyk
- Department of General, Gastroenterological and Oncological Surgery, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (W.K.); (M.J.)
| | - Marek Jackowski
- Department of General, Gastroenterological and Oncological Surgery, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (W.K.); (M.J.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (P.P.); (B.B.)
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland; (E.M.); (P.P.); (B.B.)
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
11
|
Szultka-Młyńska M, Janiszewska D, Pomastowski P, Złoch M, Kupczyk W, Buszewski B. Identification of Bacteria Associated with Post-Operative Wounds of Patients with the Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Approach. Molecules 2021; 26:5007. [PMID: 34443592 PMCID: PMC8402041 DOI: 10.3390/molecules26165007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
The bacterial infection of post-operative wounds is a common health problem. Therefore, it is important to investigate fast and accurate methods of identifying bacteria in clinical samples. The aim of the study was to analyse the use of the MALDI-TOF MS technique to identify microorganism wounds that are difficult to heal. The most common bacteria are Escherichia coli, Staphylococcus spp., and Enterococcus spp. We also demonstrate the effect of culture conditions, such as the used growth medium (solid: Brain Heart Infusion Agar, Mueller Hilton Agar, Glucose Bromocresol Purple Agar, and Vancomycin Resistance Enterococci Agar Base and liquid: Tryptic Soy Broth and BACTEC Lytic/10 Anaerobic/F), the incubation time (4, 6, and 24h), and the method of the preparation of bacterial protein extracts (the standard method based on the Bruker guideline, the Sepsityper method) to identify factors and the quality of the obtained mass spectra. By comparing the protein profiles of bacteria from patients not treated with antibiotics to those treated with antibiotics based on the presence/absence of specific signals and using the UniProt platform, it was possible to predict the probable mechanism of the action of the antibiotic used and the mechanism of drug resistance.
Collapse
Affiliation(s)
- Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Daria Janiszewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| | - Wojciech Kupczyk
- Department of General, Gastroenterological and Oncological Surgery, Collegium Medicum, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| |
Collapse
|