1
|
Llamasares-Castillo A, Uclusin-Bolibol R, Rojsitthisak P, Alcantara KP. In vitro and in vivo studies of the therapeutic potential of Tinospora crispa extracts in osteoarthritis: Targeting oxidation, inflammation, and chondroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118446. [PMID: 38857679 DOI: 10.1016/j.jep.2024.118446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1β, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25-25 μg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41%-52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 μg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.91 ± 0.37 pg/mL) and IL-1β (26.30 ± 3.68 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.
Collapse
Affiliation(s)
- Agnes Llamasares-Castillo
- The Graduate School, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila, 1015, Philippines; Faculty of Pharmacy, Department of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines.
| | | | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Lin J, Li K, Yang Z, Cao F, Gao L, Ning T, Xing D, Zeng H, Liu Q, Ge Z, Lin J. Functionally improved mesenchymal stem cells via nanosecond pulsed electric fields for better treatment of osteoarthritis. J Orthop Translat 2024; 47:235-248. [PMID: 39161657 PMCID: PMC11332990 DOI: 10.1016/j.jot.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 07/28/2024] Open
Abstract
Background Numerous approaches have been utilized to optimize mesenchymal stem cells (MSCs) performance in treating osteoarthritis (OA), however, the constrained diminished activity and chondrogenic differentiation capacity impede their therapeutic efficacy. Previous investigations have successfully shown that pretreatment with nanosecond pulsed electric fields (nsPEFs) significantly enhances the chondrogenic differentiation of MSCs. Therefore, this study aims to explore nsPEFs as a strategy to improve OA therapy by enhancing MSCs' activity and chondrogenic differentiation and also investigate its potential mechanism. Methods In this study, a million MSCs were carefully suspended within a 0.4-cm gap cuvette and subjected to five pulses of nsPEFs (100 ns at 10 kV/cm, 1 Hz), with a 1-s interval between each pulse. A control group of MSCs was maintained without nsPEFs treatment for comparative analysis. nsPEFs were applied to regulate the MSCs performance and hinder OA progresses. In order to further explore the corresponding mechanism, we examined the changes of MSCs transcriptome after nsPEF pretreatment. Finally, we studied the properties of extracellular vesicles (EVs) secreted by MSCs affected by nsPEF and the therapeutic effect on OA. Results We found that nsPEFs pretreatment promoted MSCs migration and viability, particularly enhancing their viability temporarily in vivo, which is also confirmed by mRNA sequencing analysis. It also significantly inhibited the development of OA-like chondrocytes in vitro and prevented OA progression in rat models. Additionally, we discovered that nsPEFs pretreatment reprogrammed MSC performance by enhancing EVs production (5.77 ± 0.92 folds), and consequently optimizing their therapeutic potential. Conclusions In conclusion, nsPEFs pretreatment provides a simple and effective strategy for improving the MSCs performance and the therapeutic effects of MSCs for OA. EVs-nsPEFs may serve as a potent therapeutic material for OA and hold promise for future clinical applications. The translational potential of this article This study indicates that MSCs pretreated by nsPEFs greatly inhibited the development of OA. nsPEFs pretreatment will be a promising and effective method to optimize the therapeutic effect of MSCs in the future.
Collapse
Affiliation(s)
- Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kejia Li
- Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing, 100871, China
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Fuyang Cao
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Liang Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230041, China
| | - Tong Ning
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Zeng
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Qiang Liu
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Zigang Ge
- Department of Biomedical Engineering, Institute of Future Technology, Peking University, Beijing, 100871, China
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
3
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
4
|
Jiang X, Yang J, Lin Y, Liu F, Tao J, Zhang W, Xu J, Zhang M. Extracellular vesicles derived from human ESC-MSCs target macrophage and promote anti-inflammation process, angiogenesis, and functional recovery in ACS-induced severe skeletal muscle injury. Stem Cell Res Ther 2023; 14:331. [PMID: 37964317 PMCID: PMC10647154 DOI: 10.1186/s13287-023-03530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Acute compartment syndrome (ACS) is one of the most common complications of musculoskeletal injury, leading to the necrosis and demise of skeletal muscle cells. Our previous study showed that embryonic stem cells-derived mesenchymal stem cells (ESC-MSCs) are novel therapeutics in ACS treatment. As extracellular vesicles (EVs) are rapidly gaining attention as cell-free therapeutics that have advantages over parental stem cells, the therapeutic potential and mechanisms of EVs from ESC-MSCs on ACS need to be explored. METHOD In the present study, we examined the protective effects in the experimental ACS rat model and investigated the role of macrophages in mediating these effects. Next, we used transcriptome sequencing to explore the mechanisms by which ESC-MSC-EVs regulate macrophage polarization. Furthermore, miRNA sequencing was performed on ESC-MSC-EVs to identify miRNA candidates associated with macrophage polarization. RESULTS We found that intravenous administration of ESC-MSC-EVs, given at the time of fasciotomy, significantly promotes the anti-inflammation process, angiogenesis, and functional recovery of muscle in ACS. The beneficial effects were associated with ESC-MSC-EVs affecting macrophage polarization by delivering various miRNAs which regulate NF-κB, JAK/STAT, and PI3K/AKT pathways. Our data further illustrate that ESC-MSC-EVs mainly modulate macrophage polarization via the miR-21/PTEN, miR-320a/PTEN, miR-423/NLRP3, miR-100/mTOR, and miR-26a/TLR3 axes. CONCLUSION Together, our results demonstrated the beneficial effects of ESC-MSC-EVs in ACS, wherein the miRNAs present in ESC-MSC-EVs regulate the polarization of macrophages.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Huang L, Zhang S, Wu J, Guo B, Gao T, Shah SZA, Huang B, Li Y, Zhu B, Fan J, Wang L, Xiao Y, Liu W, Tian Y, Fang Z, Lv Y, Xie L, Yao S, Ke G, Huang X, Huang Y, Li Y, Jia Y, Li Z, Feng G, Huo Y, Li W, Zhou Q, Hao J, Hu B, Chen H. Immunity-and-matrix-regulatory cells enhance cartilage regeneration for meniscus injuries: a phase I dose-escalation trial. Signal Transduct Target Ther 2023; 8:417. [PMID: 37907503 PMCID: PMC10618459 DOI: 10.1038/s41392-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Immunity-and-matrix-regulatory cells (IMRCs) derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix, which could be mass-produced with stable biological properties. Despite resemblance to mesenchymal stem cells (MSCs) in terms of self-renew and tri-lineage differentiation, the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined. Here, we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury. Following injection into the knees of rabbits with meniscal injury, IMRCs enhanced endogenous fibrocartilage regeneration. In the dose-escalating phase I clinical trial (NCT03839238) with eighteen patients recruited, we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting. Furthermore, the effective results of magnetic resonance imaging (MRI) of meniscus repair and knee functional scores suggested that 5 × 107 cells are optimal for meniscus injury treatment. In summary, we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury. Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration.
Collapse
Affiliation(s)
- Liangjiang Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baojie Guo
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingting Gao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Fan
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Xiao
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yao Tian
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Fang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Lv
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Xie
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Yujuan Li
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yi Jia
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guihai Feng
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Huo
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Gao T, Zhao X, Hao J, Tian Y, Ma H, Liu W, An B, Sun F, Liu S, Guo B, Niu S, Li Z, Wang C, Wang Y, Feng G, Wang L, Li W, Wu J, Guo M, Zhou Q, Gu Q. A scalable culture system incorporating microcarrier for specialised mesenchymal stem cells from human embryonic stem cells. Mater Today Bio 2023; 20:100662. [PMID: 37214547 PMCID: PMC10196860 DOI: 10.1016/j.mtbio.2023.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) derived from human embryonic stem cells (hESCs) are a desirable cell source for cell therapy owing to their capacity to be produced stably and homogeneously in large quantities. However, a scalable culture system for hPSC-derived MSCs is urgently needed to meet the cell quantity and quality requirements of practical clinical applications. In this study, we developed a new microcarrier with hyaluronic acid (HA) as the core material, which allowed scalable serum-free suspension culture of hESC-derived MSCs (IMRCs). We used optimal microcarriers with a coating collagen concentration of 100 μg/mL or concave-structured surface (cHAMCs) for IMRC amplification in a stirred bioreactor, expanding IMRCs within six days with the highest yield of over one million cells per milliliter. In addition, the harvested cells exhibited high viability, immunomodulatory and regenerative therapeutic promise comparable to monolayer cultured MSCs while showing more increased secretion of extracellular matrix (ECM), particularly collagen-related proteins. In summary, we have established a scalable culture system for hESC-MSCs, providing novel approaches for future cell therapies.
Collapse
Affiliation(s)
- Tingting Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyuan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huike Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Faguo Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lv Z, Cai X, Bian Y, Wei Z, Zhu W, Zhao X, Weng X. Advances in Mesenchymal Stem Cell Therapy for Osteoarthritis: From Preclinical and Clinical Perspectives. Bioengineering (Basel) 2023; 10:bioengineering10020195. [PMID: 36829689 PMCID: PMC9952673 DOI: 10.3390/bioengineering10020195] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The prevalence of osteoarthritis (OA), a degenerative disorder of joints, has substantially increased in recent years. Its key pathogenic hallmarks include articular cartilage destruction, synovium inflammation, and bone remodeling. However, treatment outcomes are unsatisfactory. Until recently, common therapy methods, such as analgesic and anti-inflammatory treatments, were aimed to treat symptoms that cannot be radically cured. Mesenchymal stem cells (MSCs), i.e., mesoderm non-hematopoietic cells separated from bone marrow, adipose tissue, umbilical cord blood, etc., have been intensively explored as an emerging technique for the treatment of OA over the last few decades. According to existing research, MSCs may limit cartilage degradation in OA by interfering with cellular immunity and secreting a number of active chemicals. This study aimed to examine the potential mechanism of MSCs in the treatment of OA and conduct a thorough review of both preclinical and clinical data.
Collapse
Affiliation(s)
- Zehui Lv
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xuejie Cai
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yixin Bian
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Correspondence: (X.Z.); (X.W.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.Z.); (X.W.)
| |
Collapse
|
8
|
Grogan S, Kopcow J, D’Lima D. Challenges Facing the Translation of Embryonic Stem Cell Therapy for the Treatment of Cartilage Lesions. Stem Cells Transl Med 2022; 11:1186-1195. [PMID: 36493381 PMCID: PMC9801304 DOI: 10.1093/stcltm/szac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/02/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a common disease resulting in significant disability without approved disease-modifying treatment (other than total joint replacement). Stem cell-based therapy is being actively explored for the repair of cartilage lesions in the treatment and prevention of osteoarthritis. Embryonic stem cells are a very attractive source as they address many of the limitations inherent in autologous stem cells, such as variability in function and limited expansion. Over the past 20 years, there has been widespread interest in differentiating ESC into mesenchymal stem cells and chondroprogenitors with successful in vitro, ex vivo, and early animal studies. However, to date, none have progressed to clinical trials. In this review, we compare and contrast the various approaches to differentiating ESC; and discuss the benefits and drawbacks of each approach. Approaches relying on spontaneous differentiation are simpler but not as efficient as more targeted approaches. Methods replicating developmental biology are more efficient and reproducible but involve many steps in a complicated process. The small-molecule approach, arguably, combines the advantages of the above two methods because of the relative efficiency, reproducibility, and simplicity. To better understand the reasons for lack of progression to clinical applications, we explore technical, scientific, clinical, and regulatory challenges that remain to be overcome to achieve success in clinical applications.
Collapse
Affiliation(s)
- Shawn Grogan
- Corresponding author: Darryl D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education, Scripps Health, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joel Kopcow
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| |
Collapse
|
9
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
10
|
Jiang X, Yang J, Liu F, Tao J, Xu J, Zhang M. Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther 2022; 13:313. [PMID: 35841081 PMCID: PMC9284828 DOI: 10.1186/s13287-022-03000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acute compartment syndrome (ACS), a well-known complication of musculoskeletal injury, results in muscle necrosis and cell death. Embryonic stem cell-derived mesenchymal stem cells (ESC-MSCs) have been shown to be a promising therapy for ACS. However, their effectiveness and potentially protective mechanism remain unknown. The present study was designed to investigate the efficacy and underlying mechanism of ESC-MSCs in ACS-induced skeletal muscle injury. Method A total of 168 male Sprague–Dawley (SD) rats underwent 2 h of intracompartmental pressure elevation by saline infusion into the anterior compartment of the left hindlimb to establish the ACS model. ESC-MSCs were differentiated from the human embryonic stem cell (ESC) line H9. A dose of 1.2 × 106 of ESC-MSCs was intravenously injected during fasciotomy. Post-ACS assessments included skeletal edema index, serum indicators, histological analysis, apoptosis, fibrosis, regeneration, and functional recovery of skeletal muscle. Then, fluorescence microscopy was used to observe the distribution of labeled ESC-MSCs in vivo, and western blotting and immunofluorescence analyses were performed to examine macrophages infiltration in skeletal muscle. Finally, we used liposomal clodronate to deplete macrophages and reassess skeletal muscle injury in response to ESC-MSC therapy. Result ESC-MSCs significantly reduced systemic inflammatory responses, ACS-induced skeletal muscle edema, and cell apoptosis. In addition, ESC-MSCs inhibited skeletal muscle fibrosis and increased regeneration and functional recovery of skeletal muscle after ACS. The beneficial effects of ESC-MSCs on ACS-induced skeletal muscle injury were accompanied by a decrease in CD86-positive M1 macrophage polarization and an increase in CD206-positive M2 macrophage polarization. After depleting macrophages with liposomal clodronate, the beneficial effects of ESC-MSCs were attenuated. Conclusion Our findings suggest that embryonic stem cell-derived mesenchymal stem cells infusion could effectively alleviate ACS-induced skeletal muscle injury, in which the beneficial effects were related to the regulation of macrophages polarization.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China. .,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China. .,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Zhou HS, Cui Z, Wang H, Gao TT, Wang L, Wu J, Xiong ZY, Hao J, Zhao MH. The therapeutic effects of human embryonic stem cells-derived immunity-and-matrix regulatory cells on membranous nephropathy. Stem Cell Res Ther 2022; 13:240. [PMID: 35672767 PMCID: PMC9172125 DOI: 10.1186/s13287-022-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Primary membranous nephropathy (MN) is a kidney-specific autoimmune disease. Human embryonic stem cells-derived immunity-and-matrix regulatory cells (hESC-IMRCs) have immunoregulatory functions. We hypothesized that hESC-IMRCs might have therapeutic effects on MN and be a potential treatment in clinical practice. Methods Rats of Heymann nephritis were injected with sheep anti-rat Fx1A serum. hESC-IMRCs were intravenously administrated upon the detection of proteinuria, with 6 × 106 cells (high-dose) or 3 × 106 cells (low-dose) in 1 ml every other day. Splenocytes and IMRCs were co-cultured at different times and ratios. Cell types and cytokines were detected by flow cytometry and enzyme-linked immunosorbent assay. Results The urinary protein of rats with Heymann nephritis was reduced remarkably to a level comparable to negative controls, in both low-dose (45.6 vs. 282.3 mg/d, P < 0.001) and high-dose (35.2 vs. 282.3 mg/d, P < 0.001) hESC-IMRC treatment groups. IgG and C3 deposit, glomerular basement membrane thickness and foot process effacement were alleviated and the reduced podocin was recovered in the kidneys. The proportions of CD4 + CD25 + T cells in circulation and spleen were increased, and the circulating level of IL-10 was increased, after IMRC interventions. IL-17 and TNF-α were reduced after IMRCs treatments. IL-10 increased remarkably in the co-culture supernatant of lymphocytes and IMRCs at 48 h with ratio 10:1. Conclusions The intravenously delivered hESC-IMRCs alleviated proteinuria and kidney injuries of Heymann nephritis, by their immunosuppressive functions through regulatory T cells and IL-10. These pre-clinical results indicate that IMRCs worth careful consideration for human trials in the treatment of MN. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02917-w.
Collapse
Affiliation(s)
- Hui-Song Zhou
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Hui Wang
- Department of Electron Microscopy, Peking University First Hospital, Beijing, 100034, China
| | - Ting-Ting Gao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Liu Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zu-Ying Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100080, China
| |
Collapse
|
12
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore
| |
Collapse
|
13
|
Mesenchymal Stem Cell Therapy for Osteoarthritis: Practice and Possible Promises. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:107-125. [DOI: 10.1007/5584_2021_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|