1
|
Erland LA. Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future. PLANT SIGNALING & BEHAVIOR 2024; 19:2366545. [PMID: 38899558 PMCID: PMC11195476 DOI: 10.1080/15592324.2024.2366545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (N-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.
Collapse
|
2
|
Abouelela MB, Eid M, Caprioli G, Owis AI. Egyptian aquaponic celery ( Apium graveolens): Phenolic and volatile profiles analysed using HPLC-MS/ms and gc-ms/ms. Nat Prod Res 2024:1-7. [PMID: 39446999 DOI: 10.1080/14786419.2024.2419503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Recently, water scarcity has been a substantial problem facing agriculture in Egypt, with a great impact on food security and hence makes it a challenge to satisfy food demand. An aquaponic system with minimum water needs is considered a substitute technique to meet the demand of food shortages. Celery (Apium graveolens) is a widely cultivated herb belonging to the family Apiaceae and widely consumed as a popular ingredient in a wide range of dishes and food recipes. A total of 13 phenolic metabolites were detected and quantified using HPLC-ESI-MS/MS. Chlorogenic acid was detected as the most abundant phenolic compound accounting for 3471.58 mg kg-1. Moreover, 65 volatile compounds belonging to 12 different classes were detected using GS-MS with an abundance of aromatic hydrocarbons at ca.68.15%. and the main constituents were 6-phenyltridecane, 6-phenyldodecane, and 5-phenylundecane at ca.6.78%, 6.62%, and 6.13% respectively. It is the first time to report metabolic profile in celery grown in an aquaponic system.
Collapse
Affiliation(s)
- Mostafa B Abouelela
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Mohamed Eid
- Faculty of Organic Agriculture, Heliopolis University, Cairo, Egypt
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Asmaa I Owis
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Beni-suef University, Beni-suef, Egypt
| |
Collapse
|
3
|
Thien DD, Dai TD, Sa NH, Tam NT. New dihydrophenanthrenes from Elatostema tenuicaudatum. Nat Prod Res 2024:1-7. [PMID: 38824678 DOI: 10.1080/14786419.2024.2359543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Three new dihydrophenanthrenes were isolated from the whole plant of Elatostema tenuicaudatum collected in Vietnam. These compounds were identified as 2,3,5-trihydroxy-9,10-dihydrophenanthrene (1), 2-methoxy-5-hydroxy-9,10-dihydrophenanthrene 3-O-β-D-glucopyranoside (2), and 2,5-dihydroxy-9,10-dihydrophenanthrene 3-O-β-D-glucopyranoside (3). Their structures were determined by HR-ESI-MS and 1D, 2D NMR spectroscopy. Furthermore, the inhibitory activities of these compounds against nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells were evaluated. Compound 1 exhibited significant inhibition of NO production, with an IC50 value of 15.8 ± 1.2 µM. This study represents the first report on the chemical compositions and biological activities of E. tenuicaudatum.
Collapse
Affiliation(s)
- Dao Duc Thien
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Tran Duc Dai
- Department Medicine and Pharmacy, Tan Trao University, Tuyen Quang, Viet Nam
| | - Nguyen Hoang Sa
- Faculty of Natural science and Technology, University of Khanh Hoa, Khanh Hoa, Viet Nam
| | - Nguyen Thanh Tam
- Institute of Chemistry, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| |
Collapse
|
4
|
Wang Y, Wang X, Huang Y, Yue T, Cao W. Analysis of Volatile Markers and Their Biotransformation in Raw Chicken during Staphylococcus aureus Early Contamination. Foods 2023; 12:2782. [PMID: 37509874 PMCID: PMC10379977 DOI: 10.3390/foods12142782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To address the potential risks to food safety, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile organic compounds (VOCs) generated from chilled chicken contaminated with Staphylococcus aureus during early storage. Together with the KEGG database, we analyzed differential metabolites and their possible biotransformation pathways. Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to characterize VOCs and identify biomarkers associated with the early stage of chicken meat contamination with S. aureus. The results showed 2,6,10,15-tetramethylheptadecane, ethyl acetate, hexanal, 2-methylbutanal, butan-2-one, 3-hydroxy-2-butanone, 3-methylbutanal, and cyclohexanone as characteristic biomarkers, and 1-octen-3-ol, tetradecane, 2-hexanol, 3-methyl-1-butanol, and ethyl 2-methylpropanoate as potential characteristic biomarkers. This provides a theoretical basis for the study of biomarkers of Staphylococcus aureus in poultry meat.
Collapse
Affiliation(s)
- Yin Wang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xian Wang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuanyuan Huang
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- Department of Food Science, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
In Vitro and In Silico Studies of Antimicrobial, and Antioxidant Activities of Chemically Characterized Essential Oil of Artemisia flahaultii L. (Asteraceae). Life (Basel) 2023; 13:life13030779. [PMID: 36983934 PMCID: PMC10055985 DOI: 10.3390/life13030779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
The present study investigated the antioxidant and antimicrobial activities as well as characterized the chemical composition of the essential oils (EO) isolated from Artemisia flahaultii (EOF). EOF was extracted using hydro-distillation, and the chemical composition of EOF was ascertained by gas chromatography coupled with mass spectrometry (GC/MS). To assess antioxidant capacity, three tests were used: the 2,2-diphenyl-1-picrylhydrazil (DPPH), the total antioxidant capacity (TAC) and the ferric-reducing antioxidant power (FRAP) test. The antimicrobial activity of EOF was investigated using the diffusion assay and minimal inhibitory concentration assays (MICs). By use of in silico structure–activity simulations, the inhibitory potency against nicotinamide adenine dinucleotide phosphate (NADPH), physicochemical characters, pharmaco-centric properties and absorption, distribution, metabolism, excretion (ADME) characteristics of EOF were determined. GC/MS analysis reveals 25 components majorly composed of D-Limonene (22.09%) followed by β-pinene (15.22%), O-cymene (11.72%), β-vinylnaphthalene (10.47%) and benzene 2,4-pentadiynyl (9.04%). The capacity of DPPH scavenging by EOF scored an IC50 of 16.00 ± 0.20 µg/mL. TAC revealed that the examined oils contained considerable amounts of antioxidants, which were determined to be 1094.190 ± 31.515 mg ascorbic acid equivalents (AAE)/g EO. Results of the FRAP method showed that EOF exhibited activity with EC50 = 6.20 ± 0.60 µg/mL. Values for minimal inhibitory concentration (MIC) against certain clinically important pathogenic bacteria demonstrate EOF’s potent antibacterial activity. MIC values of 1.34, 1.79, and 4.47 μg/mL against E. coli, B. subtilis and S. aureus were observed respectively. EOF exhibited significant antifungal activities against two stains of fungi: F. oxysporum and C. albicans, with values of 10.70 and 2.23 μg/mL, respectively. Of the total, 25 essential oils were identified. 2,4-Di-tert-butylphenol and capillin were the most active molecules against NADPH. The ADME prediction revealed that EOF was characterized by useful physicochemical characteristics and pharmaco-centric properties. The findings of this study show that the EOF can be used as an alternative to treat microbial resistance. Based on the in silico studies, EOF can be used as an “eco-friendly” NADPH inhibitor.
Collapse
|
6
|
Paul GK, Mahmud S, Dutta AK, Sarkar S, Laboni AA, Hossain MS, Nagata A, Karmaker P, Razu MH, Kazi T, Uddin MS, Zaman S, Islam MS, Khan M, Saleh MA. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L.). Sci Rep 2022; 12:19137. [PMID: 36352019 PMCID: PMC9646913 DOI: 10.1038/s41598-022-22354-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
The plant growth-boosting biofilm-forming bacteria Bacillus pseudomycoides is able to promote growth and drought stress tolerance in wheat by suppressing the MYB gene, which synthesizes Myb protein (TaMpc1-D4) through secreted volatile compounds. In the present study, Triticum aestivum seeds were inoculated with five distinct bacterial strains. The growth, germination rate, root-shoot length, RWC, and chlorophyll content of seedlings were investigated. Furthermore, the levels of soluble sugars, proteins, H2O2, NO, cell death, and antioxidant enzymes (CAT, SOD, POD, and APX) were observed throughout the growth stage. All of the results showed that B. pseudomycoides had a substantially higher ability to form biofilm and promote these traits than the other strains. In terms of molecular gene expression, B. pseudomycoides inoculation strongly expressed the Dreb1 gene by silencing the expression of MYB gene through secreted volatile compounds. For identifying the specific volatile compound that silenced the MYB gene, molecular docking with Myb protein was performed. Out of 45 volatile compounds found, 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione and 3,5-ditert-butylphenol had a binding free energy of - 6.2 and - 6.5, Kcal/mol, respectively, which predicted that these compounds could suppress this protein's expression. In molecular dynamics simulations, the RMSD, SASA, Rg, RMSF, and hydrogen bonding values found assured the docked complexes' binding stability. These findings suggest that these targeted compounds may be suppressing Myb protein expression as well as the expression of Dreb1 and other drought response genes in wheat. More research (field trial) into plant growth and drought stress is needed to support the findings of this study.
Collapse
Affiliation(s)
- Gobindo Kumar Paul
- grid.412656.20000 0004 0451 7306Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh ,Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Shafi Mahmud
- grid.1001.00000 0001 2180 7477Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601 Australia
| | - Amit Kumar Dutta
- grid.412656.20000 0004 0451 7306Department of Microbiology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Swagotom Sarkar
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Aysha Akter Laboni
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md. Shamim Hossain
- grid.411762.70000 0004 0454 7011Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003 Bangladesh
| | - Abir Nagata
- grid.136593.b0000 0004 0373 3971Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, 565-0871 Japan
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Taheruzzaman Kazi
- grid.136593.b0000 0004 0373 3971Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, 565-0871 Japan
| | - Md. Salah Uddin
- grid.412656.20000 0004 0451 7306Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Shahriar Zaman
- grid.412656.20000 0004 0451 7306Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md Sayeedul Islam
- grid.136593.b0000 0004 0373 3971Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-Cho 1-1, Toyonaka, Osaka 560-0043 Japan
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md. Abu Saleh
- grid.412656.20000 0004 0451 7306Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
7
|
In vitro antioxidant and cytotoxicity activities and in silico anticancer property of methanolic leaf extract of Leucas indica. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Miao X, Li S, Xiao B, Yang J, Huang R. Metabolomics study of the effect of Danggui Buxue Tang on rats with chronic fatigue syndrome. Biomed Chromatogr 2022; 36:e5379. [PMID: 35373377 DOI: 10.1002/bmc.5379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Danggui Buxue Tang (DBT), a traditional Chinese medicine formula for "invigorating qi and enriching blood", has been reported to produce a good effect on chronic fatigue syndrome (CFS). However, the related mechanism remains largely unresolved. In this study, a metabolomics approach with gas chromatography coupled to mass spectrometry combined with pattern recognition was devised to estimate the extent to which DBT alleviated CFS induced by food restriction and force swimming in rats. After four weeks of treatment, the endurance capability of rats was significantly better and the motionless time was significantly shorter in the DBT group than in CFS model group. Moreover, the activities of SOD and GSH-Px were increased, while the levels of MDA, IL-6 and TNF-α were decreased in the DBT treatment group. Fifteen significantly changed metabolites were observed in the serum of rats with CFS, which was reversed markedly by DBT treatment. Metabolic pathway analysis showed that DBT could possibly alleviate CFS in rats by regulating phenylalanine, tyrosine and tryptophan biosynthesis, glycine, serine and the metabolism of threonine, glycerolipid, glyoxylate, dicarboxylate and tyrosine. It was observed that the metabolism of glycine, serine and threonine was most closely related to the improvement of CFS by DBT treatment. This study showed that DBT could improve CFS effectively and metabolomics was a powerful means to gain insights into the traditional Chinese medicine formulas against CFS.
Collapse
Affiliation(s)
- Xiaoyao Miao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuo Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bingkun Xiao
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianyun Yang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rongqing Huang
- Department of pharmaceutical science, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
9
|
Swargiary A, Roy MK, Mahmud S. Phenolic compounds as α-glucosidase inhibitors: a docking and molecular dynamics simulation study. J Biomol Struct Dyn 2022; 41:3862-3871. [PMID: 35362358 DOI: 10.1080/07391102.2022.2058092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds possess significant biological activity. Several pieces of research emphasize the medicinal importance of phenolic compounds, including diabetes. The present study investigated the α-glucosidase inhibitory activity of phenolic compounds reported from several plants. The phenolic compounds reported in different literature were collected. Molecular docking was carried out using AutoDock Vina. Various physicochemical properties such as size, LogP, molecular complexity, hydrogen bonding properties of phenolic compounds were correlated with the binding affinities. Furthermore, MD simulation was carried out to study the structural stability of the docking complexes. A total of 155 phenolic compounds were reported from different plants. Amentoflavone showed the strongest binding affinity with α-glucosidase, much more potent than reference acarbose. The binding energy showed a good correlation with the molecular complexity, hydrogen bond donor and acceptor property and heavy atom counts of the compounds. The polarity of the surface area also showed a positive correlation with the binding affinity of the compounds. The best docking phenolic compound, amentoflavone, showed stable binding affinity and conformation during the simulation period compared to apoprotein and acarbose-docking complex. The top ten phenolic compounds, including amentoflavone, showed considerable drug-likeness properties with fewer toxicity effects. The study suggests that the amentoflavone could be a potential therapeutic drug as an α-glucosidase inhibitor and help control postprandial hyperglycemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananta Swargiary
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Mritunjoy Kumar Roy
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
10
|
Network Pharmacology- and Molecular Docking-Based Identification of Potential Phytocompounds from Argyreia capitiformis in the Treatment of Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8037488. [PMID: 35140801 PMCID: PMC8820870 DOI: 10.1155/2022/8037488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 12/16/2022]
Abstract
The methanolic extract of Argyreia capitiformis stem was examined for anti-inflammatory activities following network pharmacology analysis and molecular docking study. Based on gas chromatography-mass spectrometry (GC-MS) analysis, 49 compounds were identified from the methanolic extract of A. capitiformis stem. A network pharmacology analysis was conducted against the identified compounds, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology analysis of biological processes and molecular functions were performed. Six proteins (IL1R1, IRAK4, MYD88, TIRAP, TLR4, and TRAF6) were identified from the KEGG pathway analysis and subjected to molecular docking study. Additionally, six best ligand efficiency compounds and positive control (aspirin) from each protein were evaluated for their stability using the molecular dynamics simulation study. Our study suggested that IL1R1, IRAK4, MYD88, TIRAP, TLR4, and TRAF6 proteins may be targeted by compounds in the methanolic extract of A. capitiformis stem to provide anti-inflammatory effects.
Collapse
|
11
|
Kumar Paul G, Mahmud S, Aldahish AA, Afroze M, Biswas S, Briti Ray Gupta S, Hasan Razu M, Zaman S, Salah Uddin M, Nahari MH, Merae Alshahrani M, Abdul Rahman Alshahrani M, Khan M, Abu Saleh M. Computational screening and biochemical analysis of Pistacia integerrima and Pandanus odorifer plants to find effective inhibitors against Receptor-Binding domain (RBD) of the spike protein of SARS-Cov-2. ARAB J CHEM 2022; 15:103600. [PMID: 34909068 PMCID: PMC8632739 DOI: 10.1016/j.arabjc.2021.103600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/25/2021] [Indexed: 01/25/2023] Open
Abstract
Although World Health Organization-approved emergency vaccines are available in many countries, the mortality rate from COVID-19 remains high due to the fourth or fifth wave and the delta variant of the coronavirus. Thus, an effective mechanistic investigation in treating this disease is urgently needed. In this work, we extracted phytochemicals from two mangrove plants, Pistacia integerrima and Pandanus odorifer, assessing their potential actions against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. The antioxidant activities of Pistacia integerrima leaves and fruits were 142.10 and 97.13 µg/mL, respectively, whereas Pandanus odorifer leaves and fruits were 112.50 and 292.71 µg/mL, respectively. Furthermore, leaf extracts from both plants had lower cytotoxicity against Artemia salina than fruit extracts. Gas chromatography-mass spectrometry analysis revealed a total of 145 potential phytochemicals from these extracts. Three phytochemicals, 28-demethyl-beta-amyrone, 24-Noroleana-3,12-diene, and stigmasterol, displayed binding free energy values of - 8.3, -7.5, and - 8.1 Kcal/mol, respectively, in complexes with the spike protein of SARS-CoV-2. The root-mean-square deviation, solvent-accessible surface area, radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation. Thus, wet-lab validations are necessary to support these findings.
Collapse
Affiliation(s)
- Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Afaf A Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Swagota Briti Ray Gupta
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mahmudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammed H Nahari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, PO Box 1988, Najran 61441, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, PO Box 1988, Najran 61441, Saudi Arabia
| | - Mohammed Abdul Rahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, PO Box 1988, Najran 61441, Saudi Arabia
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
12
|
Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS OMEGA 2021; 6:32043-32071. [PMID: 34870027 PMCID: PMC8638006 DOI: 10.1021/acsomega.1c04817] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 05/08/2023]
Abstract
Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.
Collapse
Affiliation(s)
- Saad Ahmed Sami
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Shafi Mahmud
- Microbiology
Laboratory, Bioinformatics Division, Department of Genetic Engineering
and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular
Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sarah Albogami
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Rakib
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mostafah Mohiuddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary
Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology,
Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
13
|
Amin MR, Yasmin F, Hosen MA, Dey S, Mahmud S, Saleh MA, Emran TB, Hasan I, Fujii Y, Yamada M, Ozeki Y, Kawsar SMA. Synthesis, Antimicrobial, Anticancer, PASS, Molecular Docking, Molecular Dynamic Simulations & Pharmacokinetic Predictions of Some Methyl β-D-Galactopyranoside Analogs. Molecules 2021; 26:7016. [PMID: 34834107 PMCID: PMC8621697 DOI: 10.3390/molecules26227016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
A series of methyl β-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Md. Ruhul Amin
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (M.R.A.); (F.Y.); (M.A.H.)
| | - Farhana Yasmin
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (M.R.A.); (F.Y.); (M.A.H.)
| | - Mohammed Anowar Hosen
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (M.R.A.); (F.Y.); (M.A.H.)
| | - Sujan Dey
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Yuki Fujii
- School of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan;
| | - Masao Yamada
- School of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan;
| | - Yasuhiro Ozeki
- School of Sciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan;
| | - Sarkar Mohammad Abe Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (M.R.A.); (F.Y.); (M.A.H.)
| |
Collapse
|
14
|
Paul GK, Mahmud S, Hasan MM, Zaman S, Uddin MS, Saleh MA. Biochemical and in silico study of leaf and bark extracts from Aphanamixis polystachya against common pathogenic bacteria. Saudi J Biol Sci 2021; 28:6592-6605. [PMID: 34764775 PMCID: PMC8568816 DOI: 10.1016/j.sjbs.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aphanamixis polystachya may be a natural, renewable resource against antibiotic-resistant bacterial infections. The antibacterial activity of A. polystachya leaf and bark extracts was investigated against three antibiotic-resistant bacterial species and one fungus. Methanolic leaf extract showed only limited antibacterial activity but both methanolic and aqueous bark extract showed high antimicrobial activity. In an antioxidant activity test, leaf and bark extracts exhibited 50% free radical scavenging at a concentration of 107.14 ± 3.14 μg/mL and 97.13 ± 3.05 μg/mL, respectively, indicating that bark extracts offer more antioxidative activity than leaf extracts. Bark extracts also showed lower toxicity than leaf extracts. This suggests that bark extracts may offer greater development potential than leaf extracts. The molecular dynamics were also investigated through the simulated exploration of multiple potential interactions to understand the interaction dynamics (root-mean-square deviation, solvent-accessible surface area, radius of gyration, and the hydrogen bonding of chosen compounds to protein targets) and possible mechanisms of inhibition. This molecular modeling of compounds derived from A. polystachya revealed that inhibition may occur by binding to the active sites of the target proteins of the tested bacterial strains. A. polystachya bark extract may be used as a natural source of drugs to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Md. Mehedi Hasan
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
15
|
In vitro and in silico approach of fungal growth inhibition by Trichoderma asperellum HbGT6-07 derived volatile organic compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, Islam MN, Majumder M, Uddin MZ, Alsubaie A, Almalki ASA, Khandaker MU, Bradley D, Rana MS, Emran TB. Phytochemicals from Leucas zeylanica Targeting Main Protease of SARS-CoV-2: Chemical Profiles, Molecular Docking, and Molecular Dynamics Simulations. BIOLOGY 2021; 10:789. [PMID: 34440024 PMCID: PMC8389631 DOI: 10.3390/biology10080789] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a contemporary coronavirus, has impacted global economic activity and has a high transmission rate. As a result of the virus's severe medical effects, developing effective vaccinations is vital. Plant-derived metabolites have been discovered as potential SARS-CoV-2 inhibitors. The SARS-CoV-2 main protease (Mpro) is a target for therapeutic research because of its highly conserved protein sequence. Gas chromatography-mass spectrometry (GC-MS) and molecular docking were used to screen 34 compounds identified from Leucas zeylanica for potential inhibitory activity against the SARS-CoV-2 Mpro. In addition, prime molecular mechanics-generalized Born surface area (MM-GBSA) was used to screen the compound dataset using a molecular dynamics simulation. From molecular docking analysis, 26 compounds were capable of interaction with the SARS-CoV-2 Mpro, while three compounds, namely 11-oxa-dispiro[4.0.4.1]undecan-1-ol (-5.755 kcal/mol), azetidin-2-one 3,3-dimethyl-4-(1-aminoethyl) (-5.39 kcal/mol), and lorazepam, 2TMS derivative (-5.246 kcal/mol), exhibited the highest docking scores. These three ligands were assessed by MM-GBSA, which revealed that they bind with the necessary Mpro amino acids in the catalytic groove to cause protein inhibition, including Ser144, Cys145, and His41. The molecular dynamics simulation confirmed the complex rigidity and stability of the docked ligand-Mpro complexes based on the analysis of mean radical variations, root-mean-square fluctuations, solvent-accessible surface area, radius of gyration, and hydrogen bond formation. The study of the postmolecular dynamics confirmation also confirmed that lorazepam, 11-oxa-dispiro[4.0.4.1]undecan-1-ol, and azetidin-2-one-3, 3-dimethyl-4-(1-aminoethyl) interact with similar Mpro binding pockets. The results of our computerized drug design approach may assist in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Mycal Dutta
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.D.); (J.M.); (M.Z.U.)
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (A.M.T.); (M.N.I.)
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.)
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.)
| | - Jewel Mallick
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.D.); (J.M.); (M.Z.U.)
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (A.M.T.); (M.N.I.)
| | - Mohuya Majumder
- Drug Discovery, GUSTO A Research Group, Chittagong 4203, Bangladesh;
| | - Md. Zia Uddin
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.D.); (J.M.); (M.Z.U.)
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Abdullah Alsubaie
- Department of Physics, College of Khurma, Taif University, Taif 21944, Saudi Arabia;
| | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Malaysia; (M.U.K.); (D.A.B.)
| | - D.A. Bradley
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Malaysia; (M.U.K.); (D.A.B.)
- Department of Physics, University of Surrey, Guilford GU2 7XH, UK
| | - Md. Sohel Rana
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.D.); (J.M.); (M.Z.U.)
| |
Collapse
|
17
|
Mahmud S, Mita MA, Biswas S, Paul GK, Promi MM, Afrose S, Hasan R, Shimu SS, Zaman S, Uddin S, Tallei TE, Emran TB, Saleh A. Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Rev Clin Pharmacol 2021; 14:1305-1315. [PMID: 34301158 DOI: 10.1080/17512433.2021.1959318] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high transmission and pathogenicity of SARS-CoV-2 has led to a pandemic that has halted the world's economy and health. The newly evolved strains and scarcity of vaccines has worsened the situation. The main protease (Mpro) of SARS-CoV-2 can act as a potential target due to its role in viral replication and conservation level. METHODS In this study, we have enlisted more than 1100 phytochemicals from Asian plants based on deep literature mining. The compounds library was screened against the Mpro of SARS-CoV-2. RESULTS The selected three ligands, Flemichin, Delta-Oleanolic acid, and Emodin 1-O-beta-D-glucoside had a binding energy of -8.9, -8.9, -8.7 KJ/mol respectively. The compounds bind to the active groove of the main protease at; Cys145, Glu166, His41, Met49, Pro168, Met165, Gln189. The multiple descriptors from the simulation study; root mean square deviation, root mean square fluctuation, radius of gyration, hydrogen bond, solvent accessible surface area confirms the stable nature of the protein-ligand complexes. Furthermore, post-md analysis confirms the rigidness in the docked poses over the simulation trajectories. CONCLUSIONS Our combinatorial drug design approaches may help researchers to identify suitable drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-Bangladesh
| | - Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi-Bangladesh
| |
Collapse
|
18
|
Mahmud S, Paul GK, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Hossain A, Promi MM, Ema FK, Chidambaram K, Chandrasekaran B, Alqahtani AM, Emran TB, Saleh MA. Prospective Role of Peptide-Based Antiviral Therapy Against the Main Protease of SARS-CoV-2. Front Mol Biosci 2021; 8:628585. [PMID: 34041263 PMCID: PMC8142691 DOI: 10.3389/fmolb.2021.628585] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The recently emerged coronavirus (SARS-CoV-2) has created a crisis in world health, and economic sectors as an effective treatment or vaccine candidates are still developing. Besides, negative results in clinical trials and effective cheap solution against this deadly virus have brought new challenges. The viral protein, the main protease from SARS-CoV-2, can be effectively targeted due to its viral replication and pathogenesis role. In this study, we have enlisted 88 peptides from the AVPdb database. The peptide molecules were modeled to carry out the docking interactions. The four peptides molecules, P14, P39, P41, and P74, had more binding energy than the rest of the peptides in multiple docking programs. Interestingly, the active points of the main protease from SARS-CoV-2, Cys145, Leu141, Ser139, Phe140, Leu167, and Gln189, showed nonbonded interaction with the peptide molecules. The molecular dynamics simulation study was carried out for 200 ns to find out the docked complex’s stability where their stability index was proved to be positive compared to the apo and control complex. Our computational works based on peptide molecules may aid the future development of therapeutic options against SARS-CoV-2.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Fahmida Khan Ema
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Balakumar Chandrasekaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Philadelphia University-Jordan, Amman, Jordan
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
19
|
Mahmud S, Paul GK, Afroze M, Islam S, Gupt SBR, Razu MH, Biswas S, Zaman S, Uddin MS, Khan M, Cacciola NA, Emran TB, Saleh MA, Capasso R, Simal-Gandara J. Efficacy of Phytochemicals Derived from Avicennia officinalis for the Management of COVID-19: A Combined In Silico and Biochemical Study. Molecules 2021; 26:2210. [PMID: 33921289 PMCID: PMC8070553 DOI: 10.3390/molecules26082210] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh; (M.A.); (M.H.R.); (M.K.)
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Swagota Briti Ray Gupt
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.R.G.); (S.B.)
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh; (M.A.); (M.H.R.); (M.K.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.R.G.); (S.B.)
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, BRiCM, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh; (M.A.); (M.H.R.); (M.K.)
| | - Nunzio Antonio Cacciola
- Research Institute on Terrestrial Ecosystems (IRET)-UOS Naples, National Research Council of Italy (CNR), via P. Castellino 111, 80131 Naples, Italy;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.I.); (S.Z.); (M.S.U.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain
| |
Collapse
|
20
|
Rahman MM, Uddin MJ, Reza ASMA, Tareq AM, Emran TB, Simal-Gandara J. Ethnomedicinal Value of Antidiabetic Plants in Bangladesh: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:729. [PMID: 33918026 PMCID: PMC8070064 DOI: 10.3390/plants10040729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
The use of conventional drugs to treat metabolic disorders and the pathological consequences of diabetes further increases the complications because of the side effects, and is sometimes burdensome due to relatively higher costs and occasionally painful route of administration of these drugs. Therefore, shifting to herbal medicine may be more effective, economical, have fewer side effects and might have minimal toxicity. The present review amasses a list of ethnomedicinal plants of 143 species belonging to 61 families, from distinctive domestic survey literature, reported to have been used to treat diabetes by the ethnic and local people of Bangladesh. Leaves of the medicinal plants were found leading in terms of their use, followed by fruits, whole plants, roots, seeds, bark, stems, flowers, and rhizomes. This review provides starting information leading to the search for and use of indigenous botanical resources to discover bioactive compounds for novel hypoglycemic drug development.
Collapse
Affiliation(s)
- Md. Masudur Rahman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Md. Josim Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - A. S. M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.J.U.); (A.S.M.A.R.); (A.M.T.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
21
|
Chakraborty AJ, Mitra S, Tallei TE, Tareq AM, Nainu F, Cicia D, Dhama K, Emran TB, Simal-Gandara J, Capasso R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life (Basel) 2021; 11:317. [PMID: 33917319 PMCID: PMC8067380 DOI: 10.3390/life11040317] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bromelain is an effective chemoresponsive proteolytic enzyme derived from pineapple stems. It contains several thiol endopeptidases and is extracted and purified via several methods. It is most commonly used as an anti-inflammatory agent, though scientists have also discovered its potential as an anticancer and antimicrobial agent. It has been reported as having positive effects on the respiratory, digestive, and circulatory systems, and potentially on the immune system. It is a natural remedy for easing arthritis symptoms, including joint pain and stiffness. This review details bromelain's varied uses in healthcare, its low toxicity, and its relationship to nanoparticles. The door of infinite possibilities will be opened up if further extensive research is carried out on this pineapple-derived enzyme.
Collapse
Affiliation(s)
- Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia;
| | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
22
|
Fahad FI, Barua N, Islam MS, Sayem SAJ, Barua K, Uddin MJ, Chy MNU, Adnan M, Islam MN, Sayeed MA, Emran TB, Simal-Gandara J, Pagano E, Capasso R. Investigation of the Pharmacological Properties of Lepidagathis hyalina Nees through Experimental Approaches. Life (Basel) 2021; 11:180. [PMID: 33668978 PMCID: PMC7996513 DOI: 10.3390/life11030180] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Lepidagathis hyalina Nees is used locally in Ayurvedic medicine to treat coughs and cardiovascular diseases. This study explored its pharmacological potential through in vivo and in vitro approaches for the metabolites extracted (methanolic) from the stems of L. hyalina. A qualitative phytochemical analysis revealed the presence of numerous secondary metabolites. The methanol extract of L. hyalina stems (MELHS) showed a strong antioxidative activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assays, and in the quantitative (phenolic and flavonoid) assay. Clot lysis and brine shrimp lethality bioassays were applied to investigate the thrombolytic and cytotoxic activities, respectively. MELHS exhibited an expressive percentage of clot lysis (33.98%) with a moderately toxic (115.11 μg/mL) effect. The in vivo anxiolytic activity was studied by an elevated plus maze test, whereas the antidepressant activity was examined by a tail suspension test and forced swimming test. During the anxiolytic evaluation, MELHS exhibited a significant dose-dependent reduction of anxiety, in which the 400 mg/kg dose of the extract showed 78.77 ± 4.42% time spent in the open arm in the elevated plus maze test. In addition, MELHS demonstrated dose-dependent and significant activities in the tail suspension test and forced swimming test, whereas the 400 mg/kg dose of the extract showed 87.67 ± 6.40% and 83.33 ± 6.39% inhibition of immobile time, respectively. Therefore, the current study suggests that L. hyalina could be a potential source of anti-oxidative, cytotoxic, thrombolytic, anxiolytic, and antidepressant agents. Further study is needed to determine the mechanism behind the bioactivities.
Collapse
Affiliation(s)
- Fowzul Islam Fahad
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Niloy Barua
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Md. Shafiqul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Syed Al Jawad Sayem
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Koushik Barua
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Mohammad Jamir Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Md. Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Md. Adnan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Mohammed Aktar Sayeed
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (F.I.F.); (N.B.); (M.S.I.); (S.A.J.S.); (K.B.); (M.J.U.); (M.N.U.C.); (M.A.); (M.N.I.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus—University of Vigo, E32004 Ourense, Spain
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
23
|
Uzzaman M, Hasan MK, Mahmud S, Yousuf A, Islam S, Uddin MN, Barua A. Physicochemical, spectral, molecular docking and ADMET studies of Bisphenol analogues; A computational approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|