1
|
Huangfu B, Yang M, Xu J, Gao R, Hu Y, Zhao Y, Huang K, He X. Coreopsis tinctoria improves energy metabolism in obese hyperglycemic mice. Heliyon 2024; 10:e27449. [PMID: 38496841 PMCID: PMC10944243 DOI: 10.1016/j.heliyon.2024.e27449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Coreopsis tinctoria (CT) improves energy metabolism. However, the role of CT in alleviating obesity-induced hyperglycemia by targeting the liver remains unknown. Therefore, this article aims to explore the mechanism by which CT improves energy metabolism and resists hyperglycemia. The water and ethanol extracts of CT were administered to high-fat diet-induced (HFD) obese C57BL/6J mice at a dose of 4 g/kg.bw (low-dose water extract, WL; low-dose ethanol extract, EL) or 10 g/kg.bw (high-dose water extract, WH; high-dose ethanol extract, EH). Mice that consumed a maintenance diet (LFD) were included as blank controls. Network pharmacology, liquid chromatography-mass spectrometry (LC-MS), L02 cell cultivation, and liver transcriptomics were used to examine the mechanism and functional components of CT against obesity-induced hyperglycemia. The results indicated that WL significantly (p < 0.05) alleviated glucose intolerance and insulin resistance in obesity-induced hyperglycemia. Kaempferol is the main active compound of CT, which demonstrated significant (p < 0.05) anti-hyperglycemic effects in obese mice and L02 cells. Finally, kaempferol significantly (p < 0.05; fold change >1.2) shifted the genes involved in carbon metabolism, glycolysis/gluconeogenesis, and the mitogen-activated protein kinase (MAPK) pathways toward the trend of LFD, indicating that it exerts an anti-hyperglycemic effect through these molecular mechanisms. Overall, oral intake of CT lowers blood glucose and improves insulin sensitivity in mice with obesity-induced hyperglycemia. Kaempferol is the primary functional component of CT.
Collapse
Affiliation(s)
- Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Minglan Yang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Clinical Nutrition, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yijia Zhao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, 100083, China
| |
Collapse
|
2
|
Yamamoto K, Yamashita M, Oda M, Tjendana Tjhin V, Inagawa H, Soma GI. Oral Administration of Lipopolysaccharide Enhances Insulin Signaling-Related Factors in the KK/Ay Mouse Model of Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054619. [PMID: 36902049 PMCID: PMC10003108 DOI: 10.3390/ijms24054619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Lipopolysaccharide (LPS), an endotoxin, induces systemic inflammation by injection and is thought to be a causative agent of chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). However, our previous studies found that oral LPS administration does not exacerbate T2DM conditions in KK/Ay mice, which is the opposite of the response from LPS injection. Therefore, this study aims to confirm that oral LPS administration does not aggravate T2DM and to investigate the possible mechanisms. In this study, KK/Ay mice with T2DM were orally administered LPS (1 mg/kg BW/day) for 8 weeks, and blood glucose parameters before and after oral administration were compared. Abnormal glucose tolerance, insulin resistance progression, and progression of T2DM symptoms were suppressed by oral LPS administration. Furthermore, the expressions of factors involved in insulin signaling, such as insulin receptor, insulin receptor substrate 1, thymoma viral proto-oncogene, and glucose transporter type 4, were upregulated in the adipose tissues of KK/Ay mice, where this effect was observed. For the first time, oral LPS administration induces the expression of adiponectin in adipose tissues, which is involved in the increased expression of these molecules. Briefly, oral LPS administration may prevent T2DM by inducing an increase in the expressions of insulin signaling-related factors based on adiponectin production in adipose tissues.
Collapse
Affiliation(s)
- Kazushi Yamamoto
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
| | - Masashi Yamashita
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
| | - Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
| | - Vindy Tjendana Tjhin
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-0841, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Takamatsu 761-0301, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-0841, Japan
- Correspondence: ; Tel.: +81-87-813-9201
| |
Collapse
|
3
|
Lee H, Kim SY, Lee SW, Kwak S, Li H, Piao R, Park HY, Choi S, Jeong TS. Amentoflavone-Enriched Selaginella rossii Protects against Ultraviolet- and Oxidative Stress-Induced Aging in Skin Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122106. [PMID: 36556471 PMCID: PMC9787533 DOI: 10.3390/life12122106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Selaginellaceae plants are used in cosmetics to limit skin aging. This study is the first to investigate the anti-aging effects of Selaginella rossii (SR) on ultraviolet B (UVB)- and oxidative stress-induced skin cells. The 95% ethanol extract of Selaginella rossii (SR95E) contained much higher amounts of amentoflavone (AMF), an active compound, than other Selaginellaceae plants and was more effective in inhibiting matrix metalloproteinase (MMP)-1 expression in CCD-986sk fibroblasts. SR95E significantly decreased UVB-induced MMP-1, MMP-2, MMP-3 and MMP-9 expression and enhanced procollagen type I C-peptide content and mRNA expression of collagen type I alpha (COL1A)1 and COL1A2 in CCD-986sk fibroblasts. In HaCaT keratinocytes, SR95E treatment also dose-dependently decreased UVB-induced MMP-1 concentration and MMP-1, MMP-2, MMP-3 and MMP-9 mRNA expression. Moreover, SR95E treatment markedly inhibited UVB-induced c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling and nuclear factor kappa-B signaling in HaCaT cells. Furthermore, SR95E and AMF markedly regulated the 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced expression of cellular senescence-related markers, including p16, p21 and LMNB1, in HaCaT cells. Overall, this study indicates that SR may have potential as a functional material on preventing UVB- and AAPH-induced skin aging and wrinkles.
Collapse
Affiliation(s)
- Hwa Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sehan Kwak
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hulin Li
- Department of Agronomy, Yanbian University Agriculture College, Yanji 133000, China
| | - Renzhe Piao
- Department of Agronomy, Yanbian University Agriculture College, Yanji 133000, China
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (S.C.); (T.-S.J.); Tel.: +82-42-879-8340 (S.C.); +82-42-860-4558 (T.-S.J.); Fax: +82-42-861-8349 (S.C.); +82-42-861-2675 (T.-S.J.)
| | - Tae-Sook Jeong
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (S.C.); (T.-S.J.); Tel.: +82-42-879-8340 (S.C.); +82-42-860-4558 (T.-S.J.); Fax: +82-42-861-8349 (S.C.); +82-42-861-2675 (T.-S.J.)
| |
Collapse
|
4
|
Huang H, Gao C, Wang S, Wu F, Wei J, Peng J. Bulk RNA-seq and scRNA-seq analysis reveal an activation of immune response and compromise of secretory function in major salivary glands of obese mice. Comput Struct Biotechnol J 2022; 21:105-119. [PMID: 36544475 PMCID: PMC9735269 DOI: 10.1016/j.csbj.2022.11.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity affects the function of multiple organs/tissues including the exocrine organ salivary glands. However, the effects of obesity on transcriptomes and cell compositions in the salivary glands have yet been studied by bulk RNA-sequencing and single-cell RNA-sequencing. Besides, the cell types in the sublingual gland, one of the three major salivary glands, have yet been characterized by the approach of single-cell RNA-sequencing. In this report, we find that the histological structure of the three major salivary glands are not obviously affected in the obese mice. Bulk RNA-sequencing analysis shows that the most prominent changes observed in the three major salivary glands of the obese mice are the mobilization of transcriptomes related to the immune response and down-regulation of genes related to the secretory function of the salivary glands. Based on single-cell RNA-sequencing analysis, we identify and annotate 17 cell clusters in the sublingual gland for the first time, and find that obesity alters the relative compositions of immune cells and secretory cells in the major glands of obese mice. Integrative analysis of the bulk RNA-sequencing and single-cell RNA-sequencing data confirms the activation of immune response genes and compromise of secretory function in the three major salivary glands of obese mice. Consequently, the secretion of extracellular matrix proteins is significantly reduced in the three major salivary glands of obese mice. These results provide new molecular insights into understanding the effect of obesity on salivary glands.
Collapse
|
5
|
Kajszczak D, Kowalska-Baron A, Sosnowska D, Podsędek A. In Vitro Inhibitory Effects of Viburnum opulus Bark and Flower Extracts on Digestion of Potato Starch and Carbohydrate Hydrolases Activity. Molecules 2022; 27:molecules27103118. [PMID: 35630596 PMCID: PMC9147751 DOI: 10.3390/molecules27103118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
One of the effective treatments for diabetes is to reduce and delay the absorption of glucose by inhibition of α-amylase and α-glucosidase in the digestive tract. Currently, there is a great interest in natural inhibitors from various part of plants. In the present study, the phenolic compounds composition of V. opulus bark and flower, and their inhibitory effects on in vitro potato starch digestion as well as on α-amylase and α-glucosidase, have been studied. Bark and flower phenolic extracts reduced the amount of glucose released from potato starch during tree-stage simulated digestion, with IC50 value equal to 87.77 µg/mL and 148.87 µg/mL, respectively. Phenolic bark extract showed 34.9% and 38.4% more potent inhibitory activity against α-amylase and α-glucosidase, respectively, but the activity of plant extracts was lower than that of acarbose. Chlorogenic acid (27.26% of total phenolics) and (+)-catechin (30.48% of total phenolics) were the most prominent phenolics in the flower and bark extracts, respectively. Procyanidins may be responsible for the strongest V. opulus bark inhibitory activity against α-amylase, while (+)-catechin relative to α-glucosidase. This preliminary study provides the basis of further examination of the suitability of V. opulus bark compounds as components of nutraceuticals and functional foods with antidiabetic activity.
Collapse
Affiliation(s)
- Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
- Correspondence: (D.K.); (A.P.)
| | - Agnieszka Kowalska-Baron
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
- Correspondence: (D.K.); (A.P.)
| |
Collapse
|
6
|
Amentoflavone-Enriched Selaginella rossii Warb. Suppresses Body Weight and Hyperglycemia by Inhibiting Intestinal Lipid Absorption in Mice Fed a High-Fat Diet. Life (Basel) 2022; 12:life12040472. [PMID: 35454963 PMCID: PMC9024644 DOI: 10.3390/life12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Many Selaginellaceae species are used as traditional medicines in Asia. This study is the first to investigate the anti-obesity and anti-diabetic effects of Selaginella rossii (SR) in high-fat diet (HFD)–fed C57BL/6J mice. Seven-day oral administration of ethanol extract (100 mg/kg/day) or ethyl acetate (EtOAc) extract (50 mg/kg/day) from SR improved oral fat tolerance by inhibiting intestinal lipid absorption; 10-week long-term administration of the EtOAc extract markedly reduced HFD-induced body weight gain and hyperglycemia by reducing adipocyte hypertrophy, glucose levels, HbA1c, and plasma insulin levels. Treatment with SR extracts reduced the expression of intestinal lipid absorption-related genes, including Cd36, fatty acid-binding protein 6, ATP-binding cassette subfamily G member 8, NPC1 like intracellular cholesterol transporter 1, and ATP-binding cassette subfamily A member 1. In addition, the EtOAc extract increased the expression of protein absorption–related solute carrier family genes, including Slc15a1, Slc8a2, and Slc6a9. SR extracts reduced HFD-induced hepatic steatosis by suppressing fatty acid transport to hepatocytes and hepatic lipid accumulation. Furthermore, amentoflavone (AMF), the primary compound in SR extracts, reduced intestinal lipid absorption by inhibiting fatty acid transport in HFD-fed mice. AMF-enriched SR extracts effectively protected against HFD-induced body weight gain and hyperglycemia by inhibiting intestinal lipid absorption.
Collapse
|
7
|
Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the incidence of obesity keeps increasing in both adults and children worldwide, obesity and its complications remain major threatens to human health. Over the past decades, accumulating evidence has demonstrated the importance of microorganisms and their metabolites in the pathogenesis of obesity and related diseases. There also is a significant body of evidence validating the efficacy of microbial based therapies for managing various diseases. In this review, we collected the key information pertinent to obesity-related bacteria, fermentation substrates and major metabolites generated by studies involving humans and/or mice. We then briefly described the possible molecular mechanisms by which microorganisms cause or inhibit obesity with a focus on microbial metabolites. Lastly, we summarized the advantages and disadvantages of the utilization of probiotics, plant extracts, and exercise in controlling obesity. We speculated that new targets and combined approaches (e.g. diet combined with exercise) could lead to more precise prevention and/or alleviation of obesity in future clinical research implications.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Glycoside Hydrolases and Non-Enzymatic Glycation Inhibitory Potential of Viburnum opulus L. Fruit-In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10060989. [PMID: 34205673 PMCID: PMC8235151 DOI: 10.3390/antiox10060989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Phytochemicals of various origins are of great interest for their antidiabetic potential. In the present study, the inhibitory effects against carbohydrate digestive enzymes and non-enzymatic glycation, antioxidant capacity, and phenolic compounds composition of Viburnum opulus L. fruits have been studied. Crude extract (CE), purified extract (PE), and ethyl acetate (PEAF) and water (PEWF) fractions of PE were used in enzymatic assays to evaluate their inhibitory potential against α-amylase with potato and rice starch as substrate, α-glucosidase using maltose and sucrose as substrate, the antioxidant capacity (ABTS, ORAC and FRAP assays), antiglycation (BSA-fructose and BSA-glucose model) properties. Among four tested samples, PEAF not only had the highest content of total phenolics, but also possessed the strongest α-glucosidase inhibition, antiglycation and antioxidant activities. UPLC analysis revealed that this fraction contained mainly chlorogenic acid, proanthocyanidin oligomers and flavalignans. Contrary, the anti-amylase activity of V. opulus fruits probably occurs due to the presence of proanthocyanidin polymers and chlorogenic acids, especially dicaffeoylquinic acids present in PEWF. All V. opulus samples have an uncompetitive and mixed type inhibition against α-amylase and α-glucosidase, respectively. Considering strong anti-glucosidase, antioxidant and antiglycation activities, V. opulus fruits may find promising applications in nutraceuticals and functional foods with antidiabetic activity.
Collapse
|
9
|
Tajuddeen N, Swart T, Hoppe HC, van Heerden FR. Antiplasmodial and Cytotoxic Activities of Extract and Compounds from Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata. Chem Biodivers 2021; 18:e2100240. [PMID: 34081396 DOI: 10.1002/cbdv.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata found in KwaZulu-Natal in South Africa was investigated for phytochemical constituents, and for antiplasmodial and cytotoxic effects. The plant leaves were collected from the University of KwaZulu-Natal (UKZN) arboretum on the Pietermaritzburg Campus, in March 2019. The inhibitory activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase (pLDH) assay and cytotoxicity against HeLa cells was evaluated using the resazurin assay. The bioactive compounds were isolated by chromatographic purification and their structures were established with spectroscopic and spectrometric techniques. The plant leaf extract displayed significant antiplasmodial activity at 50 μg/mL and was also cytotoxic against HeLa cells. Chromatographic purification of the extract led to the isolation of two biflavonoids, four flavonoid glycosides, a steroid glycoside, and a megastigmene derivative. The compounds displayed antiplasmodial and antiproliferative activities at 50 μg/mL but the activity was substantially reduced at 10 μg/mL. The activities and compounds are being reported in O. obovata for the first time.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, 3209, Scottsville, Pietermaritzburg, South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Fanie R van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, 3209, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|