1
|
Lee CY, Hsu CC, Wang CH, Jeng US, Tung SH, Hu CC, Liu CL. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407622. [PMID: 39358979 DOI: 10.1002/smll.202407622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Thermoelectric generators (TEGs) based on thermogalvanic cells can convert low-temperature waste heat into electricity. Organic redox couples are well-suited for wearable devices due to their nontoxicity and the potential to enhance the ionic Seebeck coefficient through functional-group modifications. Pyrazine-based organic redox couples with different functional groups is comparatively analyzed through cyclic voltammetry under varying temperatures. The results reveal substantial differences in entropy changes with temperature and highlight 2,5-pyrazinedicarboxylic acid dihydrate (PDCA) as the optimal candidate. How the functional groups of the pyrazine compounds impact the ionic Seebeck coefficient is examined, by calculating the electrostatic potential based on density functional theory. To evaluate the thermoelectric properties, PDCA is integrated in different concentrations into a double-network hydrogel comprising poly(vinyl alcohol) and polyacrylamide. The resulting champion device exhibits an impressive ionic Seebeck coefficient (Si) of 2.99 mV K-1, with ionic and thermal conductivities of ≈67.6 µS cm-1 and ≈0.49 W m-1 K-1, respectively. Finally, a TEG is constructed by connecting 36 pieces of 20 × 10-3 m PDCA-soaked hydrogel in series. It achieves a maximum power output of ≈0.28 µW under a temperature gradient of 28.3 °C and can power a small light-emitting diode. These findings highlight the significant potential of TEGs for wearable devices.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Xia Lim RR, Sturala J, Mazanek V, Sofer Z, Bonanni A. Impedimetric detection of gut-derived metabolites using 2D Germanene-based materials. Talanta 2024; 270:125509. [PMID: 38128276 DOI: 10.1016/j.talanta.2023.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Apart from the extensively researched graphene under the Group 14 2D materials, monolayered germanene and its derivatives have been gaining interest lately as alternative class of 2D materials owing to their facile synthesis, and attractive electronic and optical properties. Herein, three different functionalized germanene-based nanomaterials, namely Ge-H, Ge-CH3 and Ge-C3-CN were investigated on their novel incorporation in impedimetric immunosensors for the detection of gut-derived metabolites associated with neurological diseases, such as kynurenic acid (KA) and quinolinic acid (QA). The designed germanene-based immunosensor relies on an indirect competitive mechanism using disposable electrode printed chips. The competition for a fixed binding site of a primary antibody occurs between the bovine serum albumin-conjugated antigens on the electrode surface and the free antigens in the solution. Among the three materials, Ge-H displayed superior bioanalytical performance in KA and QA detection. Lower limits of detection of 5.07-11.38 ng/mL (26.79-68.11 nM) were attained for KA and QA with a faster reaction time than previously reported methods. Also, minimal cross-reactivity with interfering compounds, good reproducibility in impedimetric responses (RSD = 2.43-7.51 %) and long-term stability up to a month at 4 °C were the other attributes that the proposed Ge-H competitive impedimetric immunosensor has accomplished. The application of the developed Ge-H immunosensor to serum samples allowed an accurate KA and QA quantification at physiologically relevant levels. This work serves as a stepping-stone in the development of germanene-based nanomaterials for their implementation into cost-effective, miniaturized, portable and rapid impedimetric immunosensors, which are highly desirable for point-of-care testing in clinical settings.
Collapse
Affiliation(s)
- Rachel Rui Xia Lim
- Division of Chemistry & Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jiri Sturala
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka' 5, 166 28, Prague 6, Czech Republic
| | - Vlastimil Mazanek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka' 5, 166 28, Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka' 5, 166 28, Prague 6, Czech Republic
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
3
|
Modak SV, Pert D, Tami JL, Shen W, Abdullahi I, Huan X, McNeil AJ, Goldsmith BR, Kwabi DG. Substituent Impact on Quinoxaline Performance and Degradation in Redox Flow Batteries. J Am Chem Soc 2024; 146:5173-5185. [PMID: 38358388 DOI: 10.1021/jacs.3c10454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Aqueous redox flow batteries (RFBs) are attractive candidates for low-cost, grid-scale storage of energy from renewable sources. Quinoxaline derivatives represent a promising but underexplored class of charge-storing materials on account of poor chemical stability in prior studies (with capacity fade rates >20%/day). Here, we establish that 2,3-dimethylquinoxaline-6-carboxylic acid (DMeQUIC) is vulnerable to tautomerization in its reduced form under alkaline conditions. We obtain kinetic rate constants for tautomerization by applying Bayesian inference to ultraviolet-visible spectroscopic data from operating flow cells and show that these rate constants quantitatively account for capacity fade measured in cycled cells. We use density functional theory (DFT) modeling to identify structural and chemical predictors of tautomerization resistance and demonstrate that they qualitatively explain stability trends for several commercially available and synthesized derivatives. Among these, quinoxaline-2-carboxylic acid shows a dramatic increase in stability over DMeQUIC and does not exhibit capacity fade in mixed symmetric cell cycling. The molecular design principles identified in this work set the stage for further development of quinoxalines in practical, aqueous organic RFBs.
Collapse
Affiliation(s)
- Sanat Vibhas Modak
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Daniel Pert
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Jessica L Tami
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Wanggang Shen
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Ibrahim Abdullahi
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Xun Huan
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Anne J McNeil
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - David G Kwabi
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Modak SV, Shen W, Singh S, Herrera D, Oudeif F, Goldsmith BR, Huan X, Kwabi DG. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques. Nat Commun 2023; 14:3602. [PMID: 37328467 PMCID: PMC10275907 DOI: 10.1038/s41467-023-39257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Organic redox-active molecules are attractive as redox-flow battery (RFB) reactants because of their low anticipated costs and widely tunable properties. Unfortunately, many lab-scale flow cells experience rapid material degradation (from chemical and electrochemical decay mechanisms) and capacity fade during cycling (>0.1%/day) hindering their commercial deployment. In this work, we combine ultraviolet-visible spectrophotometry and statistical inference techniques to elucidate the Michael attack decay mechanism for 4,5-dihydroxy-1,3-benzenedisulfonic acid (BQDS), a once-promising positive electrolyte reactant for aqueous organic redox-flow batteries. We use Bayesian inference and multivariate curve resolution on the spectroscopic data to derive uncertainty-quantified reaction orders and rates for Michael attack, estimate the spectra of intermediate species and establish a quantitative connection between molecular decay and capacity fade. Our work illustrates the promise of using statistical inference to elucidate chemical and electrochemical mechanisms of capacity fade in organic redox-flow battery together with uncertainty quantification, in flow cell-based electrochemical systems.
Collapse
Affiliation(s)
- Sanat Vibhas Modak
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wanggang Shen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Siddhant Singh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Herrera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fairooz Oudeif
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xun Huan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Kwabi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Zhu F, Guo W, Fu Y. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Chem Asian J 2023; 18:e202201098. [PMID: 36454229 DOI: 10.1002/asia.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Redox flow batteries (RFBs) are promising candidates for large-scale energy storage systems (ESSs) due to their unique architecture that can decouple energy and power. Aqueous RFBs based on organic molecules (AORFBs) work with a non-flammable and intrinsically safe aqueous electrolyte, and organic compounds are performed as redox couples. The application of redox-active organics tremendously expands the development space of RFBs owing to the highly tunable molecule structure. Molecular engineering enables the exceptional merits in solubility, stability, and redox potential of different organic molecules. Herein, this review summarizes the application of molecular engineering to several organic compounds, focusing on the fundamental overview of their physicochemical properties and design strategies. We discuss the electrochemical merits and performances along with the intrinsic properties of the designed organic components. Finally, we outline the requirements for rational design of innovative organics to motivate more valuable research and present the prospect of molecule engineering used in AORFBs.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
ABBAS JA, YILDIRIR Y. Synthesis and characterization of new chalcone compounds, and investigation of their DFT, optical and electrochemical properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Erşan T, Dilgin DG, Kumrulu E, Kumrulu U, Dilgin Y. Voltammetric Determination of Favipiravir Used as an Antiviral Drug for the Treatment of Covid-19 at Pencil Graphite Electrode. ELECTROANAL 2022; 35:ELAN202200295. [PMID: 36712592 PMCID: PMC9874810 DOI: 10.1002/elan.202200295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023]
Abstract
This work describes the sensitive voltammetric determination of favipiravir (FAV) based on its reduction for the first time with a low-cost and disposable pencil graphite electrode (PGE). In addition, the determination of FAV was also performed based on its oxidation. Differential pulse (DP) voltammograms recorded in 0.5 M H2SO4 for the reduction of FAV show that peak currents increase linearly in the range of 1.0 to 600.0 μM with a limit of detection of 0.35 μM. The acceptable recovery values (98.9-106.0 %) obtained from a pharmaceutical tablet, real human urine, and artificial blood serum samples spiked with FAV confirm the high accuracy of the proposed method.
Collapse
Affiliation(s)
- Teslime Erşan
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| | - Didem Giray Dilgin
- Department of Mathematics and Science EducationFaculty of EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
| | - Elif Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Umur Kumrulu
- POLİFARMA İlaç San. ve Tic. A.Ş.ErgeneTekirdağTurkey
| | - Yusuf Dilgin
- Faculty ScienceDepartment of ChemistryÇanakkale Onsekiz Mart University17100TurkeyÇanakkale
| |
Collapse
|
8
|
Fischer P, Mazúr P, Krakowiak J. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Molecules 2022; 27:560. [PMID: 35056875 PMCID: PMC8778144 DOI: 10.3390/molecules27020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Redox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active compounds. Aqueous-based organic electrolytes are considered as more promising electrolytes to achieve "green", safe, and low-cost energy storage. Many organic compounds and their derivatives have recently been intensively examined for application to redox flow batteries. This work presents an up-to-date overview of the redox organic compound groups tested for application in aqueous RFB. In the initial part, the most relevant requirements for technical electrolytes are described and discussed. The importance of supporting electrolytes selection, the limits for the aqueous system, and potential synthetic strategies for redox molecules are highlighted. The different organic redox couples described in the literature are grouped in a "family tree" for organic redox couples. This article is designed to be an introduction to the field of organic redox flow batteries and aims to provide an overview of current achievements as well as helping synthetic chemists to understand the basic concepts of the technical requirements for next-generation energy storage materials.
Collapse
Affiliation(s)
- Peter Fischer
- Fraunhofer Institute for Chemical Technology, Pfinztal, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany
| | - Petr Mazúr
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Praha 6, 166 28 Prague, Czech Republic;
| | - Joanna Krakowiak
- Physical Chemistry Department, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|