1
|
Beeren IAO, Dos Santos G, Dijkstra PJ, Mota C, Bauer J, Ferreira H, Reis RL, Neves N, Camarero-Espinosa S, Baker MB, Moroni L. A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications. Biodes Manuf 2024; 7:277-291. [PMID: 38818303 PMCID: PMC11133161 DOI: 10.1007/s42242-024-00286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Melt extrusion-based additive manufacturing (ME-AM) is a promising technique to fabricate porous scaffolds for tissue engineering applications. However, most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate. Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct; however, there are limited strategies available to control the surface density. Here, we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k (PCL5k) containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios. Stable porous three-dimensional (3D) scaffolds were then fabricated using a high weight percentage (75 wt.%) of the low molecular weight PCL5k. As a proof-of-concept test, we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface, yielding a density of 201-561 pmol/cm2. Subsequently, a bone morphogenetic protein 2 (BMP-2)-derived peptide was grafted onto the films comprising different blend compositions, and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed. After two weeks of culturing in a basic medium, cells expressed higher levels of BMP receptor II (BMPRII) on films with the conjugated peptide. In addition, we found that alkaline phosphatase activity was only significantly enhanced on films containing the highest peptide density (i.e., 561 pmol/cm2), indicating the importance of the surface density. Taken together, these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface. Moreover, we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of (modified) polymers. Furthermore, the use of alkyne-azide "click" chemistry enables spatial control over bioconjugation of many tissue-specific moieties, making this approach a versatile strategy for tissue engineering applications. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42242-024-00286-2.
Collapse
Affiliation(s)
- I. A. O. Beeren
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - G. Dos Santos
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - P. J. Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - C. Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - J. Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - H. Ferreira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - N. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - S. Camarero-Espinosa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M. B. Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L. Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Wang T, Gao D, Yin H, Zhao J, Wang X, Niu H. Kinetic Study of the Diels-Alder Reaction between Maleimide and Furan-Containing Polystyrene Using Infrared Spectroscopy. Polymers (Basel) 2024; 16:441. [PMID: 38337328 DOI: 10.3390/polym16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The Diels-Alder (D-A) reaction between furan and maleimide is a thermally reversible reaction that has become a vital chemical technique for designing polymer structures and functions. The kinetics of this reaction, particularly in polymer bulk states, have significant practical implications. In this study, we investigated the feasibility of utilizing infrared spectroscopy to measure the D-A reaction kinetics in bulk-state polymer. Specifically, we synthesized furan-functionalized polystyrene and added a maleimide small-molecule compound to form a D-A adduct. The intensity of the characteristic absorption peak of the D-A adduct was quantitatively measured by infrared spectroscopy, and the dependence of conversion of the D-A reaction on time was obtained at different temperatures. Subsequently, the D-A reaction apparent kinetic coefficient kapp and the Arrhenius activation energy Ea,D-A were calculated. These results were compared with those determined from 1H-NMR in the polymer solution states.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dali Gao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hua Yin
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jiawei Zhao
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingguo Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Hui Niu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Orozco F, Horvat D, Miola M, Moreno-Villoslada I, Picchioni F, Bose RK. Electroactive Thermo-Pneumatic Soft Actuator with Self-Healing Features: A Critical Evaluation. Soft Robot 2023; 10:852-859. [PMID: 36927095 DOI: 10.1089/soro.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.
Collapse
Affiliation(s)
- Felipe Orozco
- Department of Chemical Engineering, Product Technology, University of Groningen, Groningen, The Netherlands
| | - Diana Horvat
- Department of Chemical Engineering, Product Technology, University of Groningen, Groningen, The Netherlands
| | - Matteo Miola
- Department of Chemical Engineering, Product Technology, University of Groningen, Groningen, The Netherlands
| | - Ignacio Moreno-Villoslada
- Laboratorio de Polímeros, Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francesco Picchioni
- Department of Chemical Engineering, Product Technology, University of Groningen, Groningen, The Netherlands
| | - Ranjita K Bose
- Department of Chemical Engineering, Product Technology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
van den Tempel P, van der Boon EO, Winkelman JG, Krasnikova AV, Parisi D, Deuss PJ, Picchioni F, Bose RK. Beyond Diels-Alder: Domino reactions in furan-maleimide click networks. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Understanding the Effect of Side Reactions on the Recyclability of Furan-Maleimide Resins Based on Thermoreversible Diels-Alder Network. Polymers (Basel) 2023; 15:polym15051106. [PMID: 36904347 PMCID: PMC10007558 DOI: 10.3390/polym15051106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
We studied the effect of side reactions on the reversibility of epoxy with thermoreversible Diels-Alder (DA) cycloadducts based on furan and maleimide chemistry. The most common side reaction is the maleimide homopolymerization which introduces irreversible crosslinking in the network adversely affecting the recyclability. The main challenge is that the temperatures at which maleimide homopolymerization can occur are approximately the same as the temperatures at which retro-DA (rDA) reactions depolymerize the networks. Here we conducted detailed studies on three different strategies to minimize the effect of the side reaction. First, we controlled the ratio of maleimide to furan to reduce the concentration of maleimide groups which diminishes the effects of the side reaction. Second, we applied a radical-reaction inhibitor. Inclusion of hydroquinone, a known free radical scavenger, is found to retard the onset of the side reaction both in the temperature sweep and isothermal measurements. Finally, we employed a new trismaleimide precursor that has a lower maleimide concentration and reduces the rate of the side reaction. Our results provide insights into how to minimize formation of irreversible crosslinking by side reactions in reversible DA materials using maleimides, which is important for their application as novel self-healing, recyclable, and 3D-printable materials.
Collapse
|
6
|
Orozco F, Salvatore A, Sakulmankongsuk A, Gomes DR, Pei Y, Araya-Hermosilla E, Pucci A, Moreno-Villoslada I, Picchioni F, Bose RK. Electroactive performance and cost evaluation of carbon nanotubes and carbon black as conductive fillers in self-healing shape memory polymers and other composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
8
|
Marotta A, Salzano de Luna M, D'Avino A, Fornaro M, Filippone G, Ambrogi V. Mechanical properties and reprocessability of
Diels‐Alder
‐based reversible networks from furan‐modified resins. J Appl Polym Sci 2022. [DOI: 10.1002/app.52796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Angela Marotta
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| | - Martina Salzano de Luna
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| | - Amalia D'Avino
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| | - Mattia Fornaro
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| | - Giovanni Filippone
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| | - Veronica Ambrogi
- Department of Chemical, Materials, and Production Engineering (INSTM Consortium−UdR Naples) University of Naples Federico II Naples Italy
| |
Collapse
|
9
|
Chitosan Hydrogels Based on the Diels-Alder Click Reaction: Rheological and Kinetic Study. Polymers (Basel) 2022; 14:polym14061202. [PMID: 35335533 PMCID: PMC8955920 DOI: 10.3390/polym14061202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The Diels–Alder reaction is recognized to generate highly selective and regiospecific cycloadducts. In this study, we carried out a rheological and kinetic study of N-furfuryl chitosan hydrogels based on the Diels–Alder click reaction with different poly(ethylene)glycol-maleimide derivatives in dilute aqueous acidic solutions. It was possible to prepare clear and transparent hydrogels with excellent mechanical properties. Applying the Winter and Chambon criterion the gel times were estimated at different temperatures, and the activation energy was calculated. The higher the temperature of gelation, the higher the reaction rate. The crosslinking density and the elastic properties seem to be controlled by the diffusion of the polymer segments, rather than by the kinetics of the reaction. An increase in the concentration of any of the two functional groups is accompanied by a higher crosslinking density regardless maleimide:furan molar ratio. The hydrogel showed an improvement in their mechanical properties as the temperature increases up to 70 °C. Above that, there is a drop in G’ values indicating that there is a process opposing to the Diels–Alder reaction, most likely the retro-Diels–Alder.
Collapse
|
10
|
van den Tempel P, Picchioni F, Bose RK. Designing End-of-life Recyclable Polymers via Diels-Alder Chemistry: A Review on the Kinetics of Reversible Reactions. Macromol Rapid Commun 2022; 43:e2200023. [PMID: 35238107 DOI: 10.1002/marc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this review is to critically assess the kinetic behaviour of the furan/maleimide Diels-Alder click reaction. The popularity of this reaction is evident and still continues to grow, which is likely attributed to its reversibility at temperatures above 100°C, and due to its bio-based "roots" in terms of raw materials. This chemistry has been used to form thermo-reversible crosslinks in polymer networks, and thus allows the polymer field to design strong, but also end-of-life recyclable thermosets and rubbers. In this context, the rate at which the forward reaction (Diels-Alder for crosslinking) and its reverse (retro Diels-Alder for de-crosslinking) proceed as function of temperature is of crucial importance in assessing the feasibility of the design in real-life products. Differences in kinetics based from various studies are not well understood, but are potentially caused by chemical side groups, mass transfer limitations, and on the analysis methods being employed. In this work we attempt to place all the relevant studies in perspective with respect to each other, and thereby offer a general guide on how to assess their recycling kinetics. This review sheds light on the kinetics on the furan/maleimide Diels-Alder reaction. This popular reaction opens up a path to develop end-of-life recyclable polymer networks with self-healing properties. The factors affecting reaction kinetics are discussed, and the importance of accurate reaction kinetics in the context of polymer reprocessing is highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paul van den Tempel
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ranjita K Bose
- Department of Chemical Engineering, Product Technology, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
11
|
Reprocessed and shape memory networks involving poly(hydroxyl ether ester) and polydimethylsiloxane through Diels-Alder reaction. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|