1
|
Lavoisier A, Jamme T, Rousseau F, Morzel M. Impact of saliva incorporation on the rheological properties of in vitro gastric contents formulated from sour cream. J Texture Stud 2024; 55:e12851. [PMID: 38952153 DOI: 10.1111/jtxs.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted atγ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s atγ ̇ $$ \dot{\gamma} $$ = 20 s-1).
Collapse
Affiliation(s)
| | - Tino Jamme
- INRAE, Institut Agro, STLO, Rennes, France
| | | | | |
Collapse
|
2
|
Ashton SM, Smeets T, Quaedflieg CW. Controlling intrusive thoughts of future fears under stress. Neurobiol Stress 2023; 27:100582. [PMID: 38025283 PMCID: PMC10656271 DOI: 10.1016/j.ynstr.2023.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Negative outlooks of our future may foster unwanted and intrusive thoughts. To some extent, individuals have control over their ability to suppress intrusions and downregulate their frequency. Acute stress impairs intentional suppression, leading to an increased frequency of intrusions. The aim of this study was to gain insight into the mechanism underlying stress-induced impairments in intentional suppression of intrusions by investigating the combined and independent roles of the two major stress hormones, noradrenaline and cortisol. Healthy participants (N = 181) were administered propranolol (to block the noradrenergic response), metyrapone (to block the cortisol response), or a placebo before being exposed to the Maastricht Acute Stress Test. Intrusive thoughts of autobiographical future fears were then measured via the Imagine/No-Imagine task. Results demonstrated that the stress response was successfully altered because of the drug and stress manipulations. In all groups, repeated suppression of future fears reduced intrusions. Across the sample, an enhanced decrease over time was associated with greater attenuation of anxiety towards the related fears. The groups did not differ in the total frequency of intrusions. Though, trait anxiety increased the total number of intrusions. Our findings show that stress hormones did not influence the ability to suppress intrusions. However, our results do add support to previous research linking anxiety to memory control deficits. When using autobiographical content, future research should focus on the quality and characteristics of the individual memories to explain more of the variation observed in intentional memory control.
Collapse
Affiliation(s)
- Stephanie M. Ashton
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Tom Smeets
- Department of Medical and Clinical Psychology, Center of Research on Psychological Disorders and Somatic Diseases (CoRPS), Tilburg University, the Netherlands
| | - Conny W.E.M. Quaedflieg
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Reise M, Kranz S, Heyder M, Beck J, Roth C, Guellmar A, von Eggeling F, Schubert U, Löffler B, Sigusch B. Salivary Pellicle Formed on Dental Composites Evaluated by Mass Spectrometry-An In Situ Study. Molecules 2023; 28:6804. [PMID: 37836647 PMCID: PMC10574692 DOI: 10.3390/molecules28196804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: In the oral environment, sound enamel and dental restorative materials are immediately covered by a pellicle layer, which enables bacteria to attach. For the development of new materials with repellent surface functions, information on the formation and maturation of salivary pellicles is crucial. Therefore, the present in situ study aimed to investigate the proteomic profile of salivary pellicles formed on different dental composites. (2) Methods: Light-cured composite and bovine enamel samples (controls) were exposed to the oral cavity for 30, 90, and 120 min. All samples were subjected to optical and mechanical profilometry, as well as SEM surface evaluation. Acquired pellicles and unstimulated whole saliva samples were analyzed by SELDI-TOF-MS. The significance was determined by the generalized estimation equation and the post-hoc bonferroni adjustment. (3) Results: SEM revealed the formation of homogeneous pellicles on all test and control surfaces. Profilometry showed that composite surfaces tend to be of higher roughness compared to enamel. SELDI-TOF-MS detected up to 102 different proteins in the saliva samples and up to 46 proteins in the pellicle. Significant differences among 14 pellicle proteins were found between the composite materials and the controls. (4) Conclusions: Pellicle formation was material- and time-dependent. Proteins differed among the composites and to the control.
Collapse
Affiliation(s)
- Markus Reise
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - Stefan Kranz
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - Markus Heyder
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - Julius Beck
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - Christian Roth
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - André Guellmar
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - Ulrich Schubert
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany;
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University, Erlanger Allee 101, 07747 Jena, Germany;
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Jena University Hospital, Friedrich-Schiller University, An der alten Post 4, 07743 Jena, Germany; (M.R.); (M.H.); (J.B.); (A.G.); (B.S.)
| |
Collapse
|
4
|
Louro T, Carreira L, Caeiro I, Simões C, Ricardo-Rodrigues S, Rato AE, Capela E Silva F, Luís H, Moreira P, Lamy E. The Influence of (Poly)phenol Intake in Saliva Proteome: Short- and Medium-Term Effects of Apple. Foods 2023; 12:2540. [PMID: 37444277 DOI: 10.3390/foods12132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The relationship between salivary proteome and dietary habits was studied in previous works, where a relationship between salivary proteins like cystatins and polyphenol/tannin levels in diet was observed. However, it remains to be elucidated if this association results from an effect of polyphenol-rich food ingestion on saliva composition. The aim of this work was to test the effects of apple intake on the saliva proteome, both in the short and medium term (after 4 days of continuous intake). By incubating saliva samples with apple phenolic-rich extract, protein bands containing α-amylase, S-type cystatins, and proline-rich proteins (PRPs) appeared in the fraction that precipitated, showing the potential of these (poly)phenols to precipitate salivary proteins. Among these, it was salivary cystatins that presented changes in their levels both in the saliva samples collected immediately after apple intake and in the ones collected after 4 days of intake of an extra amount of apple. These results support the thought that intake is reflected in the salivary proteome. The effect of a polyphenol-rich food, like the apple, on salivary cystatin levels is in line with results observed in animal models and, due to the involvement of these proteins in oral food perception, it would be interesting to explore in future studies the effect of these changes on sensory perception and acceptance of polyphenol-rich food.
Collapse
Affiliation(s)
- Teresa Louro
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Laura Carreira
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Inês Caeiro
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Carla Simões
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Sara Ricardo-Rodrigues
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Ana Elisa Rato
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
- Department of Plant Science, School of Science and Technology, University of Évora, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal
| | - Fernando Capela E Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Henrique Luís
- Research Unit in Oral and Biomedical Sciences (UICOB), School of Dental Medicine and Rede de Higienistas Orais para o Desenvolvimento da Ciência (RHODes), University of Lisbon, 1649-003 Lisboa, Portugal
- Center for Innovative Care and Health Technology (ciTechcare), Polytechnic of Leiria, 2411-901 Leiria, Portugal
- Health School, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, Porto University (FCNAUP), 4150-180 Porto, Portugal
| | - Elsa Lamy
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| |
Collapse
|
5
|
Delgado A, Gonçalves S, Romano A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023; 12:foods12040840. [PMID: 36832914 PMCID: PMC9957056 DOI: 10.3390/foods12040840] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Today's global food system aggravates climate change while failing in meeting SDG2 and more. Yet, some sustainable food cultures, such as the Mediterranean Diet (MD), are simultaneously safe, healthy, and rooted in biodiversity. Their wide range of fruits, herbs, and vegetables convey many bioactive compounds, often associated with colour, texture, and aroma. Phenolic compounds are largely responsible for such features of MD's foods. These plant secondary metabolites all share in vitro bioactivities (e.g., antioxidants), and some are evidenced in vivo (e.g., plant sterols lower cholesterol levels in blood). The present work examines the role of polyphenols in the MD, with respect to human and planetary health. Since the commercial interest in polyphenols is increasing, a strategy for the sustainable exploitation of Mediterranean plants is essential in preserving species at risk while valuing local cultivars (e.g., through the geographical indication mechanism). Finally, the linkage of food habits with cultural landscapes, a cornerstone of the MD, should enable awareness-raising about seasonality, endemism, and other natural constraints to ensure the sustainable exploitation of Mediterranean plants.
Collapse
Affiliation(s)
- Amélia Delgado
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Gonçalves
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
6
|
Davis L, Lee K, Wierenga M, Running C. Salivary flow and turbidity development inconsistently associated with lower taste intensity of vegetables and juices. Food Qual Prefer 2023; 106:104807. [PMID: 36911249 PMCID: PMC9997117 DOI: 10.1016/j.foodqual.2023.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The same phytochemicals that stimulate aversive sensations are often also responsible for purported health benefits in fruits and vegetables. Prior work indicates that some salivary proteins may reduce aversiveness of phytochemicals. In rodents, the salivary binding proteins have been shown to reduce bitter taste of polyphenols and alkaloids, but work in humans has focused primarily on polyphenol astringency (dry, rough, or puckery sensations). In this study, we tested if tastes of vegetable products might correlate to either salivary flow rate or the polyphenol binding capability of saliva, as measured by turbidity development when saliva is mixed with tannic acid. Participants (N=26) provided chewing-stimulated saliva samples and rated five juices and two chopped vegetables for bitterness, sourness, and sweetness intensity. Saliva was mixed with tannic acid and light absorbance was measured for quantification of haze development. Greater absorbance corresponded to less bitterness for one green vegetable juice blend, less sweetness for two green vegetable juices and chopped kale, and less sourness from cranberry juice. Greater salivary flow corresponded to less bitterness from chopped brussels sprouts, and less sweetness from one green vegetable juice blend and chopped kale. These findings indicate that greater salivary flow rate and presence of certain salivary binding proteins is not universally associated with lower aversive tastes from phytochemical-containing foods. Whether associations between these salivary properties are ingredient specific or simply not robustly related to taste in commercial products should be further investigated.
Collapse
Affiliation(s)
- Lissa Davis
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, USA 47907
| | - Keona Lee
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, USA 47907
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, USA 47907
| | - Madison Wierenga
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, USA 47907
- Department of Public Health, Purdue University, 812 W State St, West Lafayette, IN, USA 47907
| | - Cordelia Running
- Department of Nutrition Science, Purdue University, 700 W State St, West Lafayette, IN, USA 47907
| |
Collapse
|
7
|
Zhang Y, Chen Y, Chen J. The starch hydrolysis and aroma retention caused by salivary α-amylase during oral processing of food. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Davis LA, Running CA. Repeated exposure to epigallocatechin gallate solution or water alters bitterness intensity and salivary protein profile. Physiol Behav 2021; 242:113624. [PMID: 34655570 PMCID: PMC8579467 DOI: 10.1016/j.physbeh.2021.113624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Polyphenols, bitter and astringent compounds present in many healthy foods, induce varied sensory responses across individuals. These differences in liking and flavor intensity may be attributable, in part, to differences in saliva. In the current study, we tested the effect of repeated consumption of a bitter polyphenol (epigallocatechin gallate, EGCG) solution on perceived bitterness intensity and salivary protein composition. We hypothesized exposure to EGCG would cause an increase in concentrations of salivary proteins that inhibit bitterness of polyphenols. We also hypothesized that participants with higher habitual polyphenol, specifically the flavanols, intake would experience less bitterness from EGCG solutions than those with low habitual intake, and that the high flavanol consumers would be more resistant to salivary alterations. We also tested whether bovine milk casein, a food analog for salivary proteins that may suppress bitterness, would decrease bitterness intensity of the EGCG solution and mitigate effects of the intervention. Participants (N = 37) in our crossover intervention adhered to two-week periods of daily bitter (EGCG) or control (water) solution consumption. Bitterness intensity ratings and citric acid-stimulated saliva were collected at baseline and after each exposure period. Results indicate that bitterness intensity of the EGCG solution decreased after polyphenol (bitter EGCG) exposure compared to control (water) exposure. Casein addition also decreased bitterness intensity of the EGCG solution. While there was not a significant overall main effect of baseline flavanol intake on solution bitterness, there was an interaction between intervention week and baseline flavanol intake. Surprisingly, the higher flavanol intake group rated EGCG solutions as more bitter than the low and medium intake groups. Of proteins relevant to taste perception, several cystatins changed in saliva in response to the intervention. Interestingly, most of these protein alterations occurred more robustly after the control (water) exposure rather than the bitter (EGCG) exposure, suggesting that additional factors not quantified in this work may influence salivary proteins. Thus, we confirm in this study that exposure to bitterness suppresses ratings of bitterness over time, but more work needs to establish the causal factors of how diet influences salivary proteins.
Collapse
Affiliation(s)
- Lissa A Davis
- Department of Nutrition Science, Purdue University, Stone Hall, 700 W State St., West Lafayette, IN 47907, USA
| | - Cordelia A Running
- Department of Nutrition Science, Purdue University, Stone Hall, 700 W State St., West Lafayette, IN 47907, USA.
| |
Collapse
|