1
|
Ismayilova N, Zia MK, Akkaya HS, Ulag S, Guldorum Y, Oner ET, Ince E, Duta L, Gunduz O. Development and Evaluation of Fucoidan-Loaded Electrospun Polyvinyl Alcohol/Levan Nanofibers for Wound Dressing Applications. Biomimetics (Basel) 2024; 9:508. [PMID: 39329530 PMCID: PMC11428952 DOI: 10.3390/biomimetics9090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Wound dressing is an ancient technique for promoting healing, and modern technology has led to the development of advanced dressings that enhance patient care. Nanofiber-based wound dressings are a medical innovation with enhanced properties, including improved adhesion, reduced infection rates, and increased tissue regeneration. This article focuses on electrospun nanofibrous wound dressing materials produced using the widely adopted method of electrospinning. This article explores several parameters that influence fiber size, including electrical conductivity, electric potential, collector distance, viscosity, flow rate, and surface tension. With Fucoidan (FUC) loading, an increase in the fiber diameter of the control group from 310 nm to 395 nm was observed. This research also examines the use of Halomonas Levan (HL), a polysaccharide, and polyvinyl alcohol (PVA) polymer as wound dressing materials to enhance the mechanical properties of the latter. The incorporation of various concentrations of FUC into PVA-HL electrospun nanofibers yielded diverse effects on tensile strength: an enhancement was observed in the PVA-HL-10FUC formulation, while reductions were noted in the PVA-HL-13FUC and PVA-HL-15FUC formulations. The WST1 assay demonstrated that none of the samples exhibited cytotoxicity up to 72 h, as cell viability increased over time. In conclusion, nanofibrous PVA-HL structures loaded with FUC, which promote tissue regeneration and prevent infection, could be considered a novel wound dressing material.
Collapse
Affiliation(s)
- Natavan Ismayilova
- Chemical Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey;
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (Y.G.)
| | - Muhammad Khaqan Zia
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Hatice Selen Akkaya
- Biomedical Engineering Department, Rheinisch-Westfälische Technische Hochschule Aachen, Faculty of Medicine, 65428 Aachen, Germany;
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (Y.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
- Health Institutes of Türkiye (TUSEB), 34718 Istanbul, Turkey
| | - Yeliz Guldorum
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (Y.G.)
- Department of Biomedical Engineering, Electrical and Electronics Faculty, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Ebru Toksoy Oner
- IBSB—Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey;
| | - Erol Ince
- Chemical Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey;
| | - Liviu Duta
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey; (S.U.); (Y.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
2
|
Geyik F, Kaya S, Yılmaz DE, Demirci H, Akmayan İ, Özbek T, Acar S. Propolis-Loaded Poly(lactic- co-glycolic Acid) Nanofibers: An In Vitro Study. ACS OMEGA 2024; 9:14054-14062. [PMID: 38560001 PMCID: PMC10975591 DOI: 10.1021/acsomega.3c09492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Nanofibers have high potential through their high porosity, small pore sizes, lightweight materials, and their ability to mimic the extracellular matrix structure for use in the manufacture of wound dressings for wound treatment. In this study, poly(lactic-co-glycolic acid) (PLGA) nanofibers were produced by electrospinning. Propolis was loaded into the PLGA nanofibers by the dropping method. The average diameters and effects of propolis loading on the morphology of 37.5, 50, and 100% propolis-loaded PLGA nanofibers (PLGA-P37.5, PLGA-P50, and PLGA-P100) were evaluated by scanning electron microscopy (SEM). The successful loading of propolis into PLGA nanofibers was confirmed with Fourier transform infrared spectroscopy (FTIR) analysis. In vitro propolis release was examined at physiological pH. The antioxidant activity of propolis-loaded nanofibers was studied with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Antimicrobial activities of the nanofibers against Escherichia coli, Staphylococcus aureus and Candida albicans strains were determined by the disk diffusion method. Consequently, PLGA-P50 and PLGA-P100 showed high antimicrobial activity on S. aureus and C. albicans. Cell viability was tested by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and propolis-loaded PLGA nanofibers were found to be biocompatible with human fibroblast cells. In the wound scratch assay, propolis-loaded nanofibers supported wound closure with cell migration and proliferation. Thus, in vitro wound closure properties of propolis-loaded PLGA nanofibers were evaluated for the first time in the literature.
Collapse
Affiliation(s)
- Fulya Geyik
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Seçil Kaya
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Duygu Elif Yılmaz
- Department
of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hasan Demirci
- Institute
of Functional Anatomy, Charité-Universitätsmedizin
Berlin, Berlin 10115, Germany
| | - İlkgül Akmayan
- Faculty
of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tülin Özbek
- Faculty
of Arts and Sciences, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey
| |
Collapse
|
3
|
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers (Basel) 2024; 16:664. [PMID: 38475347 DOI: 10.3390/polym16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Nanofibrous materials represent a very promising form of advanced carrier systems that can be used industrially, especially in regenerative medicine as highly functional bandages, or advanced wound dressings. By incorporation of antimicrobial additives directly into the structure of the nanofiber carrier, the functionality of the layer is upgraded, depending on the final requirement-bactericidal, bacteriostatic, antiseptic, or a generally antimicrobial effect. Such highly functional nanofibrous layers can be prepared mostly by electrospinning technology from both synthetic and natural polymers. The presence of a natural polymer in the composition is very advantageous. Especially in medical applications where, due to the presence of the material close to the human body, the healing process is more efficient and without the occurrence of an unwanted inflammatory response. However, converting natural polymers into nanofibrous form, with a homogeneously distributed and stable additive, is a great challenge. Thus, a combination of natural and synthetic materials is often used. This review clearly summarizes the issue of the incorporation and effectiveness of different types of antimicrobial substances, such as nanoparticles, antibiotics, common antiseptics, or substances of natural origin, into electrospun nanofibrous layers made of mostly natural polymer materials. A section describing the problematic aspects of antimicrobial polymers is also included.
Collapse
Affiliation(s)
- Lenka Piskláková
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Kristýna Skuhrovcová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
- Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Tereza Bártová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Štěpán Vondrovic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
4
|
Kustiawan PM, Syaifie PH, Al Khairy Siregar KA, Ibadillah D, Mardliyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. ADMET AND DMPK 2024; 12:1-26. [PMID: 38560717 PMCID: PMC10974817 DOI: 10.5599/admet.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Scientific research is crucial to develop therapies for various disease severity levels, as modern drugs cause side effects and are difficult to predict. Researchers are exploring herbal alternatives with fewer side effects, particularly propolis, which has been validated through in vitro, in vivo, and clinical studies. This will focus on scientific evidence and its supporting technology for developing new bioactive compounds for chronic diseases. Nanotechnology can improve the delivery and absorption of herbal medicines, which often have poor bioavailability due to their high molecular weight and solubility in water, particularly in oral medicines. This technology can enhance propolis's effects through multi-target therapy and reduce side effects. Experimental approach All publications related to each section of this review were discovered using the search engines Google Scholar, Scopus, and Pubmed. This was only available for publication between 2013 and 2023. The selected publications were used as references in this review after being thoroughly studied. Key results Evaluation of propolis active compounds, the classification of propolis nano formulations, design concepts, and mechanisms of action of propolis nano formulation. Additionally, the challenges and prospects for how these insights can be translated into clinical benefits are discussed. Conclusion In the last ten years, a list of nanoformulation propolis has been reported. This review concludes the difficulties encountered in developing large-scale nanoformulations. To commercialize them, improvements in nano carrier synthesis, standardized evaluation methodology within the framework of strategy process improvement, and Good Manufacturing Practices would be required.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| |
Collapse
|
5
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
6
|
Razavi MS, Ebrahimnejad P, Javar HA, Weppelmann TA, Akbari J, Amoli FA, Atyabi F, Dinarvand R. Development of dual-functional core-shell electrospun mats with controlled release of anti-inflammatory and anti-bacterial agents for the treatment of corneal alkali burn injuries. BIOMATERIALS ADVANCES 2023; 154:213648. [PMID: 37812983 DOI: 10.1016/j.bioadv.2023.213648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas A Weppelmann
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Asadi Amoli
- Ophthalmic Pathology Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, Leicester, UK.
| |
Collapse
|
7
|
de Almeida-Junior S, Ferraz MVF, de Oliveira AR, Maniglia FP, Bastos JK, Furtado RA. Advances in the phytochemical screening and biological potential of propolis. Fundam Clin Pharmacol 2023; 37:886-899. [PMID: 37038052 DOI: 10.1111/fcp.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Propolis is a natural resinous product collected from different parts of plants by bees and mixed with their salivary secretions. The occurrence of more than 180 different chemotypes has flavonoids, phenolic acids, esters, and phenolic aldehydes, as well as balsamic resins, beeswax, pollen, and essential and aromatic oils, among others. Its biological potential documented throughout the world justifies the need, from time to time, to organize reviews on the subject, with the intention of gathering and informing about the update on propolis. In this review (CRD42020212971), phytochemical advances, in vitro, in vivo, and clinical biological assays of pharmacological interest are showcased. The focus of this work is to present propolis clinical safety assays, antitumor, analgesic, antioxidant, anti-inflammatory, and antimicrobial activities. This literature review highlights propolis' promising biological activity, as it also suggests that studies associating propolis with nanotechnology should be further explored for enhanced bioprocessing applications.
Collapse
Affiliation(s)
- Silvio de Almeida-Junior
- Biosciences and Health Laboratory, State University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
| | - Matheus Vitor Ferreira Ferraz
- Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, Brazil
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alex Roberto de Oliveira
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Andrade Furtado
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| |
Collapse
|
8
|
Aydin A, Ulag S, Sahin A, Aksu B, Gunduz O, Ustundag CB, Marinas IC, Georgescu M, Chifiriuc MC. Biocompatible polyvinyl alcohol nanofibers loaded with amoxicillin and salicylic acid to prevent wound infections. Biomed Mater 2023; 18:055029. [PMID: 37604153 DOI: 10.1088/1748-605x/acf25c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Diabetic wounds are one of the most challenging clinical conditions in diabetes, necessitating the development of new treatments to foster healing and prevent microbial contamination. In this study, polyvinyl alcohol was used as a matrix polymer, and amoxicillin (AMX) and salicylic acid (SA) were selected as bioactive compounds with antimicrobial (with AMX) and anti-inflammatory action (with SA) to obtain innovative drug-loaded electrospun nanofiber patches for the management of diabetic wounds. Scanning electron microscope images revealed the uniform and beadless structure of the nanofiber patches. Mechanical tests indicated that AMX minimally increased the tensile strength, while SA significantly reduced it. The patches demonstrated effective antibacterial activity against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) strains. The potential of these patches in the development of novel wound dressings is highlighted by the excellent biocompatibility with fibroblast cells maintained for up to 7 d.
Collapse
Affiliation(s)
- Ayca Aydin
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Ali Sahin
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | | | - Mihaela Georgescu
- Research Institute of the University of Bucharest (ICUB), 050568 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050568 Bucharest, Romania
- Romanian Academy, 050045 Bucharest, Romania
| |
Collapse
|
9
|
Sadat Mirbagheri M, Akhavan-Mahdavi S, Hasan A, Saeed Kharazmi M, Mahdi Jafari S. Propolis-loaded nanofiber scaffolds based on polyvinyl alcohol and polycaprolactone. Int J Pharm 2023:123186. [PMID: 37385356 DOI: 10.1016/j.ijpharm.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Propolis-loaded electrospun nanofibers (PENs) have been regarded as promising candidates for biomedical purposes such as wound healing/dressing owing to their outstanding pharmacological and biological properties. This paper focuses on the development of electrospun nanofibers with optimum levels of propolis (PRP) and two polymer types (polycaprolactone (PCL) and polyvinyl alcohol (PVA)). Hence, response surface methodology (RSM) was employed to investigate the variation of the scaffold characteristics including porosity, average diameter, wettability, release, and tensile strength. For each response, a second-order polynomial model with a high coefficient of determination (R2) values ranging from 0.95 to 0.989 was developed using multiple linear regression analysis. The overall optimum region with the best characteristics was found to be at PCL/6% PRP and PVA/5% PRP. After selecting the optimal samples, the cytotoxicity assay showed no toxicity for the optimal concentrations of PRP. Furthermore, Fourier transform infrared (FTIR) spectra revealed that no new chemical functional groups were introduced in the PENs. Uniform fibers were found in the optimum samples without the appearance of a bead-like structure in the fibers. In conclusion, nanofibers containing the optimal concentration of PRP with suitable properties can be used in biomedical and tissue engineering.
Collapse
Affiliation(s)
- Mahnaz Sadat Mirbagheri
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sahar Akhavan-Mahdavi
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Qatar
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
10
|
Du P, Chen X, Chen Y, Li J, Lu Y, Li X, Hu K, Chen J, Lv G. In vivo and in vitro studies of a propolis-enriched silk fibroin-gelatin composite nanofiber wound dressing. Heliyon 2023; 9:e13506. [PMID: 36895376 PMCID: PMC9988512 DOI: 10.1016/j.heliyon.2023.e13506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, electrospun nanofibers (NFs) used in trauma dressings were prepared using silk fibroin (SF) and gelatin (GT) as materials and highly volatile formic acid as the solvent, with three different concentrations of propolis extracts (EP), which were loaded through a simple process. The resulting samples were characterized by surface morphology, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle meter, water absorption, degradation rate, and mechanical property tests. The incorporation of propolis improved its antibacterial properties against Escherichia coli, and Staphylococcus aureus, compared to those of the silk gelatin nanofiber material (SF/GT) alone. In vitro biocompatibility assays showed that SF/GT-1%EP had good cytocompatibility and hemocompatibility. In addition, it can also significantly promote the migration of L929 cells. SF/GT-1%EP was applied to a mouse model of full thickness skin defects, and it was found to significantly promote wound healing. These results indicate that the SF/GT-EP nanofiber material has good biocompatibility, migrating-promoting capability, antibacterial properties, and healing-promoting ability, providing a new idea for the treatment of full thickness skin defects.
Collapse
Affiliation(s)
- Pan Du
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Xue Chen
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Yang Chen
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jin Li
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Yichi Lu
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Xiaoxiao Li
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Kai Hu
- Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Junfeng Chen
- Jiangnan University Wuxi School of Medicine, Wuxi, Jiangsu, 214122, China
| | - Guozhong Lv
- The Affifiliated Hospital of Jiangnan University, Jiangsu, 214000, China
- Corresponding author.
| |
Collapse
|
11
|
Hochheim S, Sampaio NMFM, da Cruz AF, Del Mercato LL, D'Amone E, da Silva BJG, Saul CK, de Oliveira CC, Riegel-Vidotti I. Preparation and Investigation of Thermally Annealed Zein-Propolis Electrospun Nanofibers for Biomedical Applications. Macromol Biosci 2023; 23:e2200524. [PMID: 36852933 DOI: 10.1002/mabi.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Zein, a corn-derived protein, has a variety of applications ranging from drug delivery to tissue engineering and wound healing. This work aims to develop a biocompatible scaffold for dermal applications based on thermally annealed electrospun propolis-loaded zein nanofibers. Pristine fibers' biocompatibility is determined in vitro. Next, propolis from Melipona quadrifasciata is added to the fibers at different concentrations (5% to 25%), and the scaffolds are studied. The physicochemical properties of zein/propolis precursor dispersions are evaluated and the results are correlated to the fibers' properties. Due to zein's and propolis' very favorable interactions, which are responsible for the increase in the dispersions surface tension, nanometric size ribbon-like fibers ranging from 420 to 575 nm are obtained. The fiber's hydrophobicity is not dependent on propolis concentration and increases with the annealing procedure. Propolis inhibitory concentration (IC50 ) is determined as 61.78 µg mL-1 . When loaded into fibers, propolis is gradually delivered to cells as Balb/3T3 fibroblasts and are able to adhere, grow, and interact with pristine and propolis-loaded fibers, and cytotoxicity is not observed. Therefore, the zein-propolis nanofibers are considered biocompatible and safe. The results are promising and provide prospects for the development of wound-healing nanofiber patches-one of propolis' main applications.
Collapse
Affiliation(s)
- Sabrina Hochheim
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Naiara M F M Sampaio
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Anderson Fraga da Cruz
- Laboratory of Inflammatory and Neoplastic Cells, Department of Cell Biology, Section of Biological Sciences, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Bruno José Gonçalves da Silva
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| | - Cyro Ketzer Saul
- Department of Physics, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Carolina Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Department of Cell Biology, Section of Biological Sciences, Universidade Federal do Parana, Curitiba, 81530, Brazil
| | - Izabel Riegel-Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, Universidade Federal do Parana, Av Cel Francisco H dos Santos, s/n, Curitiba, PR, 81530, Brazil
| |
Collapse
|
12
|
Baykara D, Pilavci E, Cesur S, Ilhan E, Ulag S, Sengor M, Kijeńska‐Gawrońska E, Gunduz O. Controlled Release of Gentamicin from Electrospun Poly(Vinyl Alcohol)/Gelatin Nanofibers: The Effect of Crosslinking Time Using Glutaraldehyde Vapor. ChemistrySelect 2023. [DOI: 10.1002/slct.202203681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dilruba Baykara
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Turkey
| | - Esra Pilavci
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| | - Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
| | - Elif Ilhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Bioengineering Faculty of Engineering Marmara University Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
| | - Mustafa Sengor
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| | - Ewa Kijeńska‐Gawrońska
- Centre for Advanced Materials and Technologies CEZAMAT Warsaw University of Technology Poland
- Faculty of Materials Science and Engineering Warsaw University of Technology Poland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Turkey
| |
Collapse
|
13
|
Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El‐Hamshary H, El‐Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Syed Ali Padusha Mohamed Khan
- PG and Research Department of Chemistry Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli India
| | - Badr M. Thamer
- Department of Chemistry College of Science, King Saud University Saudi Arabia
| | - Nirmala Rajkumar
- Department of Biotechnology Hindustan College of Arts and Science (Affiliated to University of Madras) Chennai India
| | - Hany El‐Hamshary
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| | - Mohamed El‐Newehy
- Department of Chemistry College of Science, King Saud University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Egypt
| |
Collapse
|
14
|
Izgis H, Ilhan E, Kalkandelen C, Celen E, Guncu MM, Turkoglu Sasmazel H, Gunduz O, Ficai D, Ficai A, Constantinescu G. Manufacturing of Zinc Oxide Nanoparticle (ZnO NP)-Loaded Polyvinyl Alcohol (PVA) Nanostructured Mats Using Ginger Extract for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3040. [PMID: 36080077 PMCID: PMC9457793 DOI: 10.3390/nano12173040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this research, as an alternative to chemical and physical methods, environmentally and cost-effective antimicrobial zinc oxide nanoparticles (ZnO NP) were produced by the green synthesis method. The current study focuses on the production of ZnO NP starting from adequate precursor and Zingiber officinale aqueous root extracts (ginger). The produced ZnO NP was loaded into electrospun nanofibers at different concentrations for various tissue engineering applications such as wound dressings. The produced ZnO NPs and ZnO NP-loaded nanofibers were examined by Scanning Electron Microscopy (SEM) for morphological assessments and Fourier-transform infrared spectrum (FT-IR) for chemical assessments. The disc diffusion method was used to test the antimicrobial activity of ZnO NP and ZnO NP-loaded nanofibers against three representatives strains, Escherichia coli (Gram-negative bacteria), Staphylococcus aureus (Gram-positive bacteria), and Candida albicans (fungi) microorganisms. The strength and stretching of the produced fibers were assessed using tensile tests. Since water absorption and weight loss behaviors are very important in tissue engineering applications, swelling and degradation analyses were applied to the produced nanofibers. Finally, the MTT test was applied to analyze biocompatibility. According to the findings, ZnO NP-loaded nanofibers were successfully synthesized using a green precipitation approach and can be employed in tissue engineering applications such as wound dressing.
Collapse
Affiliation(s)
- Hursima Izgis
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
| | - Elif Ilhan
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Cevriye Kalkandelen
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Department of Electronics and Automation, Vocational School of Technical Sciences, Istanbul University-Cerrahpasa, Istanbul 34500, Turkey
| | - Emrah Celen
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
| | - Mehmet Mucahit Guncu
- Department of Medical Microbiology, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara 06830, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, UPB, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- National Center for Micro and Nanomaterials, UPB, Splaiul Independentei 313, 060042 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050045 Bucharest, Romania
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
15
|
Wang Z, Li H, Zhou W, Lee J, Liu Z, An Z, Xu D, Mo H, Hu L, Zhou X. Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model. Biomaterials 2022; 290:121842. [DOI: 10.1016/j.biomaterials.2022.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
16
|
Fabrication of Amphotericin-B-loaded Sodium Alginate Nanoparticles for Biomedical Applications. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Kumar Sahu D, Pradhan D, Halder J, Biswasroy P, Kar B, Ghosh G, Rath G. Design and optimization of gatifloxacin loaded polyvinyl alcohol nanofiber for the treatment of dry eye infection: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
The Role of Multilayer Electrospun Poly(Vinyl Alcohol)/Gelatin nanofibers loaded with Fluconazole and Cinnamaldehyde in the Potential Treatment of Fungal Keratitis. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Gunduz O, Ulag S. Gentamicin and fluconazole loaded electrospun polymethylmethacrylate (PMMA) fibers as a novel platform for the treatment of corneal keratitis. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Zelca Z, Kukle S, Janceva S, Vilcena L. Propolis Integration Methods into Solutions for Highly Loaded Propolis Fibers by Needleless Electrospinning. Molecules 2022; 27:molecules27072311. [PMID: 35408710 PMCID: PMC9000478 DOI: 10.3390/molecules27072311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
A load-bearing matrix filled with biologically active compounds is an efficient method for transporting them to the target location. Bee-made propolis has long been known as a natural product with antibacterial and antiviral, anti-inflammatory, antifungal properties, and anti-oxidative activity. The aim of the research is to obtain stable propolis/PVA solutions and produce fibers by electrospinning. To increase propolis content in fibers as much as possible, various types of propolis extracts were used. As a result of the research, micro- and nano-fiber webs were obtained, the possible use of which have biomedical and bioprotective applications. All used materials are edible and safe for humans, and fiber webs were prepared without using any toxic agent. This strategy overcomes propolis processing problems due to limitations to its solubility. The integration of different combinations of extracts allows more than 73 wt% of propolis to be incorporated into the fibers. The spinning solution preparation method was adapted to each type of propolis, and by combining the methods, solutions with different propolis extracts were obtained. Firstly, the total content of flavonoids in the propolis extracts was determined for the assessment and prediction of bioactivity. The properties of the extracts relevant for the preparation of electrospinning solutions were also evaluated. Secondly, the most appropriate choice of PVA molecular weight was made in order not to subject the propolis to too high temperatures (to save resources and not reduce the bioactivity of propolis) during the solution preparation process and to obtain fibers with the smallest possible diameter (for larger surface-to-volume ratios of nanofibers and high porosity). Third, electrospinning solutions were evaluated (viscosity, pH, conductivity and density, shelf life) before and after the addition of propolis to predict the maximum propolis content in the fibers and spinning stability. Each solution combination was spun using a cylindrical type electrode (suitable for industrial production) and tested for a stable electrospinning process. Using adapted solution-mixing sequences, all the obtained solutions were spun stably, and homogeneous fibers were obtained without major defects.
Collapse
Affiliation(s)
- Zane Zelca
- Institute of Design Technology, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Kipsala Street 6, LV-1084 Riga, Latvia; (S.K.); (L.V.)
- Correspondence:
| | - Silvija Kukle
- Institute of Design Technology, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Kipsala Street 6, LV-1084 Riga, Latvia; (S.K.); (L.V.)
| | - Sarmite Janceva
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia;
| | - Laimdota Vilcena
- Institute of Design Technology, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Kipsala Street 6, LV-1084 Riga, Latvia; (S.K.); (L.V.)
| |
Collapse
|
21
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Nonwoven Releasing Propolis as a Potential New Wound Healing Method-A Review. Molecules 2021; 26:molecules26185701. [PMID: 34577172 PMCID: PMC8471897 DOI: 10.3390/molecules26185701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/22/2023] Open
Abstract
Wound healing poses a serious therapeutic problem. Methods which accelerate tissue regeneration and minimize or eliminate complications are constantly being sought. This paper is aimed at evaluation of the potential use of biodegradable polymer nonwovens releasing propolis as wound healing dressings, based on the literature data. Propolis is honeybee product with antioxidant, antibacterial, antifungal, anticancer, anti-inflammatory, analgesic, and regenerative properties. Controlled release of this substance throughout the healing should promote healing process, reduce the risk of wound infection, and improve aesthetic effect. The use of biodegradable aliphatic polyesters and polyester carbonates as a propolis carrier eliminates the problem of local drug administration and dressing changes. Well-known degradation processes and kinetics of the active substance release allows the selection of the material composition appropriate to the therapy. The electrospinning method allows the production of nonwovens that protect the wound against mechanical damage. Moreover, this processing technique enables adjusting product properties by modifying the production parameters. It can be concluded that biodegradable polymer dressings, releasing a propolis, may find potential application in the treatment of complicated wounds, as they may increase the effectiveness of treatment, as well as improve the patient’s life quality.
Collapse
|
23
|
An In Vitro Study of Antibacterial Properties of Electrospun Hypericum perforatum Oil-Loaded Poly(lactic Acid) Nonwovens for Potential Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growth of population and increase in diseases that cause an enormous demand for biomedical material consumption is a pointer to the pressing need to develop new sustainable biomaterials. Electrospun materials derived from green polymers have gained popularity in recent years for biomedical applications such as tissue engineering, wound dressings, and drug delivery. Among the various bioengineering materials used in the synthesis of a biodegradable polymer, poly(lactic acid) (PLA) has received the most attention from researchers. Hypericum perforatum oil (HPO) has antimicrobial activity against a variety of bacteria. This study aimed to investigate the development of an antibacterial sustainable material based on PLA by incorporating HPO via a simple, low-cost electrospinning method. Chemical, morphological, thermal, thickness and, air permeability properties, and in vitro antibacterial activity of the electrospun nonwoven fabric were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of the electrospun nonwoven fabric, which had bead-free morphology ultrafine fibers. Antibacterial tests revealed that the Hypericum perforatum oil-loaded poly(lactic acid) nonwoven fabrics obtained had high antibacterial efficiency against Escherichia coli and Staphylococcus aureus, indicating a strong potential for use in biomedical applications.
Collapse
|