1
|
Li X, Yang X, Guo W, Li H, Sun W, Lin X, Ma Z, Li X, Liu Z. Natural products as inhibitors against pancreatic cancer cell proliferation and invasion: possible mechanisms. Am J Cancer Res 2024; 14:2695-2713. [PMID: 39005683 PMCID: PMC11236794 DOI: 10.62347/xlzx8935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer is one of the gastrointestinal tumors with the lowest survival rate and the worst prognosis. At the time of diagnosis, the majority of patients have missed the opportunity for radical surgical resection and opt for chemotherapy as their primary treatment choice. And drug resistance emerges during the application of the most widely used chemotherapeutic regimens such as modified FOLFIRINOX regimen, gemcitabine monotherapy or 5-Fluorouracil combination therapy, which further reduces the therapeutic efficacy. Therefore, it is urgent to explore better treatment strategies for pancreatic cancer. In recent years, more and more studies have found that natural products have significant anti-pancreatic cancer properties. In this paper, we reviewed the possible mechanisms by which natural products inhibit the proliferation and invasion of pancreatic cancer cells, including the possible mechanisms of targeting the inhibition of the growth and proliferation regulatory pathways of pancreatic cancer cells, inducing apoptosis and autophagy of pancreatic cancer cells, inhibiting the EMT process of pancreatic cancer cells, and inhibiting the angiogenesis of pancreatic cancer. Meanwhile, natural products have also hindered the progress of their basic and clinical research due to the complexity of their composition and the limitation of biological extraction technology. Further exploration of the specific molecular mechanisms of natural products to inhibit the proliferation and invasion of pancreatic cancer cells, optimization of purification and preparation techniques, and enrichment of basic and clinical trials to verify their efficacy and safety may be the future direction of natural products in the field of anti-pancreatic cancer research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Hao Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Weiqing Sun
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Zuoxin Ma
- Medical Laboratory, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Xuan Li
- Department of Orthopedics, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| |
Collapse
|
2
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
4
|
Gregory E, Powers I, Jamshidi-Parsian A, Griffin R, Song Y. Pancreatic Tumor-Derived Extracellular Vesicles Stimulate Schwann Cell Phenotype Indicative of Perineural Invasion via IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546629. [PMID: 37425927 PMCID: PMC10326972 DOI: 10.1101/2023.06.26.546629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Pancreatic cancer remains a pre-eminent cause of cancer-related deaths with late-stage diagnoses leading to an 11% five-year survival rate. Moreover, perineural invasion (PNI), in which cancer cells migrate into adjacent nerves, occurs in an overwhelming majority of patients, further enhancing tumor metastasis. PNI has only recently been recognized as a key contributor to cancer progression; thus, there are insufficient treatment options for the disease. Attention has been focused on glial Schwann cells (SC) for their mediation of pancreatic PNI. Under stress, SCs dedifferentiate from their mature state to facilitate the repair of peripheral nerves; however, this signaling can also re-direct cancer cells to accelerate PNI. Limited research has explored the mechanism that causes this shift in SC phenotype in cancer. Tumor-derived extracellular vesicles (TEV) have been implicated in other avenues of cancer development, such as pre-metastatic niche formation in secondary locations, yet how TEVs contribute to PNI has not been fully explored. In this study, we highlight TEVs as initiators of SC activation into a PNI-associated phenotype. Proteomic and pathway assessments of TEVs revealed an elevation in interleukin-8 (IL-8) signaling and nuclear factor kappa B (NFκB) over healthy cell-derived EVs. TEV-treated SCs exhibited higher levels of activation markers, which were successfully neutralized with IL-8 inhibition. Additionally, TEVs increased NFκB subunit p65 nuclear translocation, which may lead to increased secretion of cytokines and proteases indicative of SC activation and PNI. These findings present a novel mechanism that may be targeted for the treatment of pancreatic cancer PNI. Statement of Significance Identifying pancreatic tumor extracellular vesicles as key players in Schwann cell activation and perineural invasion by way of IL-8 will educate for more specialized and effective targets for an under-valued disease.
Collapse
|
5
|
He X, Wang N, Zhang Y, Huang X, Wang Y. The therapeutic potential of natural products for treating pancreatic cancer. Front Pharmacol 2022; 13:1051952. [PMID: 36408249 PMCID: PMC9666876 DOI: 10.3389/fphar.2022.1051952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Pancreatic cancer is one of the most malignant tumors of the digestive tract, with the poor prognosis and low 5-year survival rate less than 10%. Although surgical resection and chemotherapy as gemcitabine (first-line treatment) has been applied to the pancreatic cancer patients, the overall survival rates of pancreatic cancer are quite low due to drug resistance. Therefore, it is of urgent need to develop alternative strategies for its treatment. In this review, we summarized the major herbal drugs and metabolites, including curcumin, triptolide, Panax Notoginseng Saponins and their metabolites etc. These compounds with antioxidant, anti-angiogenic and anti-metastatic activities can inhibit the progression and metastasis of pancreatic cancer. Expecting to provide comprehensive information of potential natural products, our review provides valuable information and strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xia He
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Department of Surgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaobo Huang, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaobo Huang, ; Yi Wang,
| |
Collapse
|
6
|
Zullkiflee N, Taha H, Usman A. Propolis: Its Role and Efficacy in Human Health and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186120. [PMID: 36144852 PMCID: PMC9504311 DOI: 10.3390/molecules27186120] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
With technological advancements in the medicinal and pharmaceutical industries, numerous research studies have focused on the propolis produced by stingless bees (Meliponini tribe) and Apis mellifera honeybees as alternative complementary medicines for the potential treatment of various acute and chronic diseases. Propolis can be found in tropical and subtropical forests throughout the world. The composition of phytochemical constituents in propolis varies depending on the bee species, geographical location, botanical source, and environmental conditions. Typically, propolis contains lipid, beeswax, essential oils, pollen, and organic components. The latter include flavonoids, phenolic compounds, polyphenols, terpenes, terpenoids, coumarins, steroids, amino acids, and aromatic acids. The biologically active constituents of propolis, which include countless organic compounds such as artepillin C, caffeic acid, caffeic acid phenethyl ester, apigenin, chrysin, galangin, kaempferol, luteolin, genistein, naringin, pinocembrin, coumaric acid, and quercetin, have a broad spectrum of biological and therapeutic properties such as antidiabetic, anti-inflammatory, antioxidant, anticancer, rheumatoid arthritis, chronic obstruct pulmonary disorders, cardiovascular diseases, respiratory tract-related diseases, gastrointestinal disorders, as well as neuroprotective, immunomodulatory, and immuno-inflammatory agents. Therefore, this review aims to provide a summary of recent studies on the role of propolis, its constituents, its biologically active compounds, and their efficacy in the medicinal and pharmaceutical treatment of chronic diseases.
Collapse
Affiliation(s)
- Nadzirah Zullkiflee
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Hussein Taha
- Environmental and Life Science, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
- Correspondence:
| |
Collapse
|
7
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
8
|
Laminarin Attenuates ROS-Mediated Cell Migration and Invasiveness through Mitochondrial Dysfunction in Pancreatic Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11091714. [PMID: 36139787 PMCID: PMC9495390 DOI: 10.3390/antiox11091714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/26/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a notoriously aggressive type of cancer with a high metastasis rate. It is conventionally treated by surgical resection and neoadjuvant chemotherapy. However, continuous chemotherapy leads to relapse in most PDAC patients due to chemical resistance. Therefore, novel anticancer agents need to be identified and developed. The antitumor activities of laminarin extracted from brown algae against hepatocarcinoma, lung, and colon cancer have been established. However, its effects on pancreatic cancer have remained obscure. Purpose: Our study identified the anticancer effects of laminarin on pancreatic cancer cells and tried to explain its intracellular mechanisms. Methods: We assessed the cell viability of PANC-1 and MIA PaCa-2 cells using MTT assay. Hanging drop method was used for the spheroid formation. Flow cytometry was conducted to evaluate the several intracellular alterations including apoptosis, ROS production, mitochondrial membrane potential (MMP), and calcium concentration induced by laminarin. An invasion test was performed to assess the inhibitory effect of laminarin on cell migration and the invasive genes were evaluated by RT-qPCR. Signaling pathway related with anticancer effects of laminarin was analyzed by western blot. Results: We report that inhibiting laminarin increased the proliferation and viability of the representative pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. Laminarin triggered apoptosis and mitochondrial impairment as evidenced by depolarized mitochondrial membranes, disrupted calcium, and suppressed cell migration caused by reactive oxygen species production and related intracellular signaling pathways. Moreover, laminarin showed synergistic effects when combined with 5-FU, a standard anticancer agent for PDAC. Conclusion: The present study is the first to report that laminarin exerts anticancer effect through ROS production in pancreatic cancer cells. Laminarin shows potential to serve as a new anticancer agent for treating PDAC.
Collapse
|
9
|
An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5901191. [PMID: 35754701 PMCID: PMC9232326 DOI: 10.1155/2022/5901191] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Propolis is a natural compound collected by honeybees from different parts of plants. Honeybees produce a sticky component besides honey by mixing the tree resin and other botanical sources with saliva called propolis or bee glue. Propolis was traditionally used as a wound healing substance, cosmetic, medicine, and many other conditions. Till now, there is no definite curable treatment for most cancers and chemotherapeutic drugs and drugs used for targeted therapies have serious side effects. According to a recent research, natural products are becoming increasingly essential in cancer prevention. Natural products are a great source of potential therapeutic agents, especially in the treatment of cancer. Previous studies have reported that the presence of caffeic acid phenethyl ester (CAPE), artepillin C, and chrysin is responsible for the anticancer potential of propolis. Most of the previous studies suggested that propolis and its active compounds inhibit cancer progression by targeting multiple signaling pathways including phosphoinositide 3-kinases (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling molecules, and induce cell cycle arrest. Induction of apoptosis by propolis is mediated through extrinsic and intrinsic apoptotic pathways. The aim of this review is to highlight and summarize the molecular targets and anticancer potential of propolis and its active compounds on cell survival, proliferation, metastasis, and apoptosis in cancer cells.
Collapse
|
10
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|