1
|
Rathi A, Noor S, Khan S, Khan F, Anjum F, Ashraf A, Taiyab A, Islam A, Imtaiyaz Hassan M, Haque MM. Investigating pH-induced conformational switch in PIM-1: An integrated multi spectroscopic and MD simulation study. Comput Biol Chem 2024; 113:108265. [PMID: 39488934 DOI: 10.1016/j.compbiolchem.2024.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
PIM-1 is a Ser/Thr kinase, which has been extensively studied as a potential target for cancer therapy due to its significant roles in various cancers, including prostate and breast cancers. Given its importance in cancer, researchers are investigating the structure of PIM-1 for pharmacological inhibition to discover therapeutic intervention. This study examines structural and conformational changes in PIM-1 across different pH using various spectroscopic and computational techniques. Spectroscopic results indicate that PIM-1 maintains its secondary and tertiary structure within the pH range of 7.0-9.0. However, protein aggregation occurs in the acidic pH range of 5.0-6.0. Additionally, kinase assays suggested that PIM-1 activity is optimal within the pH range of 7.0-9.0. Subsequently, we performed a 100 ns all-atom molecular dynamics (MD) simulation to see the effect of pH on PIM-1 structural stability at the molecular level. MD simulation analysis revealed that PIM-1 retains its native conformation in alkaline conditions, with some residual fluctuations in acidic conditions as well. A strong correlation was observed between our MD simulation, spectroscopic, and enzymatic activity studies. Understanding the pH-dependent structural changes of PIM-1 can provide insights into its role in disease conditions and cellular homeostasis, particularly regarding protein function under varying pH conditions.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Faizya Khan
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
2
|
Liebau J, Laatsch BF, Rusnak J, Gunderson K, Finke B, Bargender K, Narkiewicz-Jodko A, Weeks K, Williams MT, Shulgina I, Musier-Forsyth K, Bhattacharyya S, Hati S. Polyethylene Glycol Impacts Conformation and Dynamics of Escherichia coli Prolyl-tRNA Synthetase Via Crowding and Confinement Effects. Biochemistry 2024; 63:1621-1635. [PMID: 38607680 PMCID: PMC11223479 DOI: 10.1021/acs.biochem.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.
Collapse
Affiliation(s)
- Jessica Liebau
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Bethany F. Laatsch
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Joshua Rusnak
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Keegan Gunderson
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Brianna Finke
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Kassandra Bargender
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Alex Narkiewicz-Jodko
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Katelyn Weeks
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Murphi T. Williams
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Irina Shulgina
- Department
of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Karin Musier-Forsyth
- Department
of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sudeep Bhattacharyya
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Sanchita Hati
- Department
of Chemistry and Biochemistry, University
of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| |
Collapse
|
3
|
Singh A, Gupta M, Rastogi H, Khare K, Chowdhury PK. Deeper Insights into Mixed Crowding through Enzyme Activity, Dynamics, and Crowder Diffusion. J Phys Chem B 2024; 128:5293-5309. [PMID: 38808573 DOI: 10.1021/acs.jpcb.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kedar Khare
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Hamano Y, Inagawa A, Otsuka T, Kageyama R, Ogawa J, Roppongi M, Higashiguchi T, Uehara N. Elucidating the Quenching Mechanism of Tris(2,2'-bipyridyl)ruthenium(II) Complex in the Water-Glycerol Binary System Based on the Microscopic Structure of the Media. J Phys Chem B 2024; 128:1771-1779. [PMID: 38329904 DOI: 10.1021/acs.jpcb.3c07882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Kinetic studies on the photochemical quenching reaction of the tris(2,2'-bipyridyl) ruthenium(II) complex ([Ru(bpy)3]2+) in water-glycerol binary media were conducted based on the Einstein-Smoluchowski (E-S) theory. Dynamic and static quenching behaviors were analyzed by comparing results from time-resolved spectroscopy and emission spectroscopy. While the dynamic quenching reaction aligns well with the E-S theory, static quenching was observed, leading to a notable increase in the overall photoquenching reaction rate constant. Employing chromatography and infrared spectroscopy, we correlated the microscopic molecular structure of the binary solvent system and the solvation environment around the emitters with the reaction mechanism. This correlation was found to correspond to ion pair formation and the confinement effect of the emitter, respectively.
Collapse
Affiliation(s)
- Yuki Hamano
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Arinori Inagawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Takuhiro Otsuka
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551,Japan
| | - Ryo Kageyama
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Juri Ogawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Makoto Roppongi
- Center for Instrumental Analysis, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Takeshi Higashiguchi
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| | - Nobuo Uehara
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585,Japan
| |
Collapse
|
5
|
Stewart CJ, Olgenblum GI, Propst A, Harries D, Pielak GJ. Resolving the enthalpy of protein stabilization by macromolecular crowding. Protein Sci 2023; 32:e4573. [PMID: 36691735 PMCID: PMC9942490 DOI: 10.1002/pro.4573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Proteins in the cellular milieu reside in environments crowded by macromolecules and other solutes. Although crowding can significantly impact the protein folded state stability, most experiments are conducted in dilute buffered solutions. To resolve the effect of crowding on protein stability, we use 19 F nuclear magnetic resonance spectroscopy to follow the reversible, two-state unfolding thermodynamics of the N-terminal Src homology 3 domain of the Drosophila signal transduction protein drk in the presence of polyethylene glycols (PEGs) of various molecular weights and concentrations. Contrary to most current theories of crowding that emphasize steric protein-crowder interactions as the main driving force for entropically favored stabilization, our experiments show that PEG stabilization is accompanied by significant heat release, and entropy disfavors folding. Using our newly developed model, we find that stabilization by ethylene glycol and small PEGs is driven by favorable binding to the folded state. In contrast, for larger PEGs, chemical or soft PEG-protein interactions do not play a significant role. Instead, folding is favored by excluded volume PEG-protein interactions and an exothermic nonideal mixing contribution from release of confined PEG and water upon folding. Our results indicate that crowding acts through molecular interactions subtler than previously assumed and that interactions between solution components with both the folded and unfolded states must be carefully considered.
Collapse
Affiliation(s)
- Claire J. Stewart
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gil I. Olgenblum
- Institute of Chemistry & the Fritz Haber Research Center, The Hebrew UniversityJerusalemIsrael
| | - Ashlee Propst
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Daniel Harries
- Institute of Chemistry & the Fritz Haber Research Center, The Hebrew UniversityJerusalemIsrael
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
6
|
Interaction of Thioflavin T (ThT) and 8-anilino-1-naphthalene sulfonic acid (ANS) with macromolecular crowding agents and their monomers: Biophysical analysis using in vitro and computational approaches. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Parray ZA, Naqvi AAT, Ahanger IA, Shahid M, Ahmad F, Hassan MI, Islam A. Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers (Basel) 2022; 14:polym14224808. [PMID: 36432935 PMCID: PMC9692323 DOI: 10.3390/polym14224808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
It is known from in vitro studies that macromolecular crowding in the cell effects protein structure, stability and function; but predictive studies are relatively unexplored. There are few reports where the effect of various crowder mixtures has been exploited to discern their combined effect on the structural stability of proteins. These studies are more significant because their effect can mimicked with in vivo conditions, where the environment is heterogeneous. Effects of two crowders, polyethylene glycol (PEG 400 Da), and its monomer ethylene glycol (EG) alone and in mixture on the structural stability of cytochrome c (cyt c) were determined using various spectroscopic and bioinformatics tools. The main conclusions of our study are (i) the monomer EG has a kosmotropic effect on the protein (stabilizes the protein), and has no significant effect on the tertiary structure; (ii) PEG 400 destabilizes the structure as well as the stability of the protein; and (iii) EG counteracts the destabilizing effect of PEG 400. From this investigation, it seems evident that proteins may fold or unfold in the crowded environment of the cell where various interactions assist them to maintain their structure for their functions. Bioinformatics approaches were also used to support all of the in vitro observations. Cyt c is functional protein; if the structure of the protein is modulated due to change in the environment its nature of function will also change. Our research addresses the question by modulating the environment around the protein, and the macromolecule (protein) conformation dynamics and interaction study via in vitro and in silico approaches which indirectly compares with that of the environment in-cellular milieu, which is highly crowded.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: ; Tel.: +91-9312812007
| |
Collapse
|
8
|
Yameen D, Siraj S, Parray ZA, Masood M, Islam A, Haque MM. Soft interactions versus hard core repulsions: A journey of cytochrome c from acid-induced denaturation to native protein via pre-molten globule and molten globule conformations exploiting dextran and its monomer glucose. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Basheeruddin M, Khan S, Ahmed N, Jamal S. Effect of pH on Diclofenac-Lysozyme Interaction: Structural and Functional Aspect. Front Mol Biosci 2022; 9:872905. [PMID: 35898307 PMCID: PMC9309515 DOI: 10.3389/fmolb.2022.872905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
As a nonsteroidal antiinflammatory drug, diclofenac (DCF) is used in the treatment of a variety of human ailments. It has already been reported that the use of this class of drugs for a longer duration is associated with numerous side effects such as cardiovascular implications, reno-medullary complications, etc. In the present study, the effect of DCF on the structure, stability, and function of lysozyme was studied. The study was designed to examine the effect of DCF only at various pH values. Heat-induced denaturation of lysozyme was analyzed in the presence and absence of various molar concentrations of DCF at different pH values. The values of thermodynamic parameters, the midpoint of denaturation (T m), enthalpy change at T m (ΔH m), constant pressure heat capacity change (ΔC p), and Gibbs energy change at 25°C (ΔG D o), thus obtained under a given set of conditions (pH and molar concentration of DCF), demonstrated the following 1) DCF destabilized lysozyme with respect of T m and ΔG D o at all the pH values, 2) the magnitude of protein destabilization is lesser at acidic pH than at physiological pH, 3) structural changes in lysozyme are less projecting at pH 2.0 than at pH 7.0, and 4) quenching is observed at both pH values. Furthermore, the process of protein destabilization in the presence of DCF is entropically driven.
Collapse
Affiliation(s)
| | | | | | - Shazia Jamal
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
10
|
Parray ZA, Ahmad F, Chaudhary AA, Rudayni HA, Al-Zharani M, Hassan MI, Islam A. Size-Dependent Interplay of Volume Exclusion Versus Soft Interactions: Cytochrome c in Macromolecular Crowded Environment. Front Mol Biosci 2022; 9:849683. [PMID: 35693552 PMCID: PMC9174945 DOI: 10.3389/fmolb.2022.849683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Even though there are a great number of possible conformational states, how a protein generated as a linear unfolded polypeptide efficiently folds into its physiologically active form remained a fascinating and unanswered enigma inside crowded conditions of cells. In this study, various spectroscopic techniques have been exploited to know and understand the effect and mechanism of action of two different sizes of polyethylene glycols, or PEGs (molecular mass ∼10 and ∼20 kilo Daltons, kDa), on cytochrome c (cyt c). The outcomes showed that small size of the PEG leads to perturbation of the protein structure, and conversely, large size of the PEG has stabilizing effect on cyt c. Moreover, binding measurements showed that small size of PEG interacts strongly via soft interactions compared to the larger size of PEG, the latter being governed more by excluded volume effect or preferential exclusion from the protein. Overall, this finding suggests that conformations of protein may be influenced in cellular crowded conditions via interactions which depend upon the size of molecule in the environment. This study proposes that both volume exclusion and soft (chemical) interactions governs the protein’s conformation and functional activities. The cellular environment’s internal architecture as evident from crowder size and shape in this study has a significant role.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Asimul Islam,
| |
Collapse
|
11
|
Liu D, Qiu Y, Li Q, Zhang H. Atomistic Simulation of Lysozyme in Solutions Crowded by Tetraethylene Glycol: Force Field Dependence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072110. [PMID: 35408509 PMCID: PMC9000840 DOI: 10.3390/molecules27072110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
The behavior of biomolecules in crowded environments remains largely unknown due to the accuracy of simulation models and the limited experimental data for comparison. Here we chose a small crowder of tetraethylene glycol (PEG-4) to investigate the self-crowding of PEG-4 solutions and molecular crowding effects on the structure and diffusion of lysozyme at varied concentrations from dilute water to pure PEG-4 liquid. Two Amber-like force fields of Amber14SB and a99SB-disp were examined with TIP3P (fast diffusivity and low viscosity) and a99SB-disp (slow diffusivity and high viscosity) water models, respectively. Compared to the Amber14SB protein simulations, the a99SB-disp model yields more coordinated water and less PEG-4 molecules, less intramolecular hydrogen bonds (HBs), more protein-water HBs, and less protein-PEG HBs as well as stronger interactions and more hydrophilic and less hydrophobic contacts with solvent molecules. The a99SB-disp model offers comparable protein-solvent interactions in concentrated PEG-4 solutions to that in pure water. The PEG-4 crowding leads to a slow-down in the diffusivity of water, PEG-4, and protein, and the decline in the diffusion from atomistic simulations is close to or faster than the hard sphere model that neglects attractive interactions. Despite these differences, the overall structure of lysozyme appears to be maintained well at different PEG-4 concentrations for both force fields, except a slightly large deviation at 370 K at low concentrations with the a99SB-disp model. This is mainly attributed to the strong intramolecular interactions of the protein in the Amber14SB force field and to the large viscosity of the a99SB-disp water model. The results indicate that the protein force fields and the viscosity of crowder solutions affect the simulation of biomolecules under crowding conditions.
Collapse
|
12
|
Gupta M, Chowdhury PK. Protein dynamics as a sensor for macromolecular crowding: Insights into mixed crowding. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Parray ZA, Naqvi AAT, Ahmad F, Hassan MI, Islam A. Characterization of different intermediate states in myoglobin induced by polyethylene glycol: A process of spontaneous molecular self-organization foresees the energy landscape theory via in vitro and in silico approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|