1
|
Fan H, Xue B, Lu J, Sun T, Zhao Q, Liu Y, Niu M, Yu S, Yang Y, Zhang L. Recent advances of bioaerogels in medicine: Preparation, property and application. Int J Biol Macromol 2024; 291:139144. [PMID: 39722377 DOI: 10.1016/j.ijbiomac.2024.139144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Bioaerogels represent a type of three-dimensional porous materials fabricated from natural biopolymers, and show a significant potential for medical application due to their characteristics of extremely low density, high specific surface area, excellent biocompatibility and biodegradability. The preparation method and parameters of bioaerogels are focused on, and their influence on the structure and properties of bioaerogels are discussed in detail. Then, to match the properties of bioaerogels with the medical applications, this work emphasizes the main properties (including biocompatibility, degradability, and mechanical properties), structural parameters (such as suitable porosity, pore size and high specific surface area), and further summarizes the influence of single-component and composite bioaerogels on their properties. Moreover, according to the different applications (wound healing, drug delivery, and tissue engineering and other fields), the function method, mechanism and practical effect of bioaerogels are comprehensively analyzed. Finally, the challenges, future research directions, and solutions for the practical application of bioaerogels in medicine are discussed.
Collapse
Affiliation(s)
- Haoyong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Baoxia Xue
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jiaxin Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Tao Sun
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinke Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yong Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiping Yu
- Department of Interventional Therapy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Li Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China.
| |
Collapse
|
2
|
Wang Z, An Z, Richel A, Huang M, Gou X, Xu D, Zhang M, Mo H, Hu L, Zhou X. Ferrous sulfate remodels the properties of sodium alginate-based hydrogel and facilitates the healing of wound infection caused by MRSA. Carbohydr Polym 2024; 346:122554. [PMID: 39245535 DOI: 10.1016/j.carbpol.2024.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Frequent occurrence of wound infection caused by multiple-resistant bacteria (MRB) has posed a serious challenge to the current healthcare system relying on antibiotics. The development of novel antimicrobial materials with high safety and efficacy to heal wound infection is of great importance in combating this crisis. Herein, we prepared a promising antibacterial hydrogel by cross-linking ferrous ions (Fe2+) with the deprotonated carboxyl anion in sodium alginate (Na-ALG) to cure wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Interestingly, ferrous-modified Na-ALG (Fe-ALG) hydrogel demonstrated better properties compared to the traditional Na-ALG-based hydrogels, including injectability, self-healing, appropriate fluidity, high-water retention, potent MRSA-killing efficacy, and excellent biocompatibility. Importantly, the addition of Fe2+ enhances the antibacterial efficacy of the Na-ALG hydrogel, enabling it to effectively eliminate MRSA and accelerate the healing of antibiotic-resistant bacterial-infected wounds in a remarkably short period (10 days). This modification not only facilitates wound closure and fur generation, but also mitigates systemic inflammation, thereby effectively impeding the spread of MRSA to the lungs. Taken together, Fe-ALG hydrogel is a promising therapeutic material for treating wound infections by Staphylococcus aureus, especially by antibiotic-resistant strains like MRSA.
Collapse
Affiliation(s)
- Zhen Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China; Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Zinuo An
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege, Belgium
| | - Minmin Huang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Dan Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
4
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Rădulescu M, Grumezescu AM, Nicolae CL. Advancements in Aerogel Technology for Antimicrobial Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1110. [PMID: 38998715 PMCID: PMC11243751 DOI: 10.3390/nano14131110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
This paper explores the latest advancements in aerogel technology for antimicrobial therapy, revealing their interesting capacity that could improve the current medical approaches for antimicrobial treatments. Aerogels are attractive matrices because they can have an antimicrobial effect on their own, but they can also provide efficient delivery of antimicrobial compounds. Their interesting properties, such as high porosity, ultra-lightweight, and large surface area, make them suitable for such applications. The fundamentals of aerogels and mechanisms of action are discussed. The paper also highlights aerogels' importance in addressing current pressing challenges related to infection management, like the limited drug delivery alternatives and growing resistance to antimicrobial agents. It also covers the potential applications of aerogels in antimicrobial therapy and their possible limitations.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-A.C.); (C.-L.N.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-A.C.); (C.-L.N.)
| |
Collapse
|
5
|
Collier M. A clinical observational case series evaluation of a superabsorbent dressing on exudating wounds. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:S29-S37. [PMID: 38900666 DOI: 10.12968/bjon.2024.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The annual cost to the NHS of managing 3.8 million patients with a wound was estimated in 2020 to be £8.3 billion, of which £5.6 billion was spent on the 30% of wounds that did not heal and £2.7 billion on the 70% of wounds that healed (Guest, 2020). One of the main symptoms associated with chronic 'hard-to-heal' wounds is the production of excess exudate (Atkin et al, 2019). This is due to a prolonged chronic inflammatory response stimulated by a physiological cause. This article describes what exudate is and its importance in the wound healing process, highlighting the consequences of too little or excessive wound exudate associated with any wound. The article goes on to describe a case series observational study involving a range of patients (n=47; 33 male/14 female), aged between 33 and 91 years (mean 67.4 years), with a variety of acute (n=11) and chronic exuding wounds (n=44). In total, 55 wounds of various aetiologies were managed with DryMax Super (a dressing whose design includes superabsorbent polymers) in order to evaluate and report on the absorption and fluid-handling properties of the product.
Collapse
Affiliation(s)
- Mark Collier
- Nurse Consultant and Associate Lecturer - Tissue Viability UK (independent and University of Lincoln), Chair of the Leg Ulcer Forum (England and Wales), and Council Member of the European Wound Management Association
| |
Collapse
|
6
|
Yu S, Budtova T. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr Polym 2024; 332:121925. [PMID: 38431419 DOI: 10.1016/j.carbpol.2024.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Carboxymethyl cellulose (CMC) is a well-known cellulose derivative used in biomedical applications due to its biocompatibility and biodegradability. In this work, novel porous CMC materials, aerogels, were prepared and tested as a drug delivery device. CMC aerogels were made from CMC solutions, followed by non-solvent induced phase separation and drying with supercritical CO2. The influence of CMC characteristics and of processing conditions on aerogels' density, specific surface area, morphology and drug release properties were investigated. Freeze-drying of CMC solutions was also used as an alternative process to compare the properties of the as-obtained "cryogels" with those of aerogels. Aerogels were nanostructured materials with bulk density below 0.25 g/cm3 and high specific surface area up to 143 m2/g. Freeze drying yields highly macroporous materials with low specific surface areas (around 5-18 m2/g) and very low density, 0.01 - 0.07g/cm3. Swelling and dissolution of aerogels and cryogels in water and in a simulated wound exudate (SWE) were evaluated. The drug was loaded in aerogels and cryogels, and release kinetics in SWE was investigated. Drug diffusion coefficients were correlated with material solubility, morphology, density, degree of substitution and drying methods, demonstrating tuneability of new materials' properties in view of their use as delivery matrices.
Collapse
Affiliation(s)
- Sujie Yu
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Tatiana Budtova
- Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France.
| |
Collapse
|
7
|
Alavi F, Ciftci ON. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. Int J Biol Macromol 2024; 264:129945. [PMID: 38311127 DOI: 10.1016/j.ijbiomac.2024.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The high porosity and specific surface area of aerogels offer an ideal platform for loading bioactive molecules. In the present study, the microstructure of the bio-based starch aerogels was modulated by the incorporation of chitosan. The starch hydrogel precursors were prepared from high amylose corn starch in the presence of 0, 0.50, and 0.75 wt% chitosan. Afterward, a green single-step simultaneous aerogel formation-curcumin deposition method was applied to impregnate curcumin into the aerogels through supercritical carbon dioxide (SC-CO2) drying technology. Composite starch/chitosan aerogels showed a more open porous structure and lighter weight than the neat starch counterpart. Confocal microscopy and fluorescence spectroscopy analysis confirmed curcumin molecules' attachment to the aerogels' hydrophobic cavities. The impregnation capacity was 24-27 mg curcumin per gram of aerogel depending on the composition of the aerogels. The loading of curcumin in the aerogels significantly enhanced the bioaccessibility of curcumin in the simulated gastrointestinal fluid by almost 30-fold when compared to the unloaded curcumin. Furthermore, the bioaccessibility of the curcumin loaded in starch-chitosan composite aerogels was higher than that in neat starch aerogels. While unloaded curcumin showed an undetectable intestinal Caco-2 cell transportation, curcumin-loaded aerogels revealed a cumulative curcumin passing of 0.15-0.23 μg/mL.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
8
|
Iglesias-Mejuto A, Magariños B, Ferreira-Gonçalves T, Starbird-Pérez R, Álvarez-Lorenzo C, Reis CP, Ardao I, García-González CA. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Carbohydr Polym 2024; 324:121536. [PMID: 37985110 DOI: 10.1016/j.carbpol.2023.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Scaffolds grafting combined with local delivery of antibiotics at the injury site may promote bone regeneration along with prevention of infections. In this work, a processing strategy combining the 3D-printing of polysaccharide-based inks with supercritical (sc)CO2 technology was employed to manufacture drug-loaded, nanostructured, and personalized-to-patient aerogels for the first time. Methylcellulose (MC) was employed as graft matrix endowed with nanohydroxyapatite (nHA) to confer bioactivity as required in bone tissue engineering (BTE). MC-nHA aerogels were obtained through the 3D-printing of hydrogel-based scaffolds followed by scCO2 drying. Aerogels were loaded with vancomycin (VAN), an antibiotic employed in the management of bone infections. Textural properties and printing fidelity of scaffolds were studied as well as VAN release, long-term bioactivity, and pre-osteoblasts mineralization. In vitro cell studies and in vivo Artemia salina tests were carried out to evaluate the potential toxicity of the antibiotic-loaded aerogels. Aerogels efficacy in inhibiting bacterial growth was assessed by antimicrobial tests with Staphylococcus aureus. Textural stability of the aerogels after 7 months of storage was also evaluated. Obtained results showed that the scaffolds promoted the intended two-in-one effect (bone repair and infection management simultaneously) in a personalized way, regulating formulation design, drug dose, and porosity.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ricardo Starbird-Pérez
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), School of Chemistry, Instituto Tecnológico de Costa Rica, 159-7050 Cartago, Costa Rica; Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Carmen Álvarez-Lorenzo
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Inés Ardao
- BioFarma Research group, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Fijalkowski M, Ali A, Qamer S, Coufal R, Adach K, Petrik S. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review. Gels 2023; 10:4. [PMID: 38275842 PMCID: PMC10815221 DOI: 10.3390/gels10010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.
Collapse
Affiliation(s)
- Mateusz Fijalkowski
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Azam Ali
- Department of Material Science, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Shafqat Qamer
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Radek Coufal
- Department of Science and Research, Faulty of Health Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Kinga Adach
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Stanislav Petrik
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
10
|
Bernardes BG, Baptista-Silva S, Illanes-Bordomás C, Magalhães R, Dias JR, Alves NMF, Costa R, García-González CA, Oliveira AL. Expanding the Potential of Self-Assembled Silk Fibroin as Aerogel Particles for Tissue Regeneration. Pharmaceutics 2023; 15:2605. [PMID: 38004583 PMCID: PMC10675346 DOI: 10.3390/pharmaceutics15112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
A newly produced silk fibroin (SF) aerogel particulate system using a supercritical carbon dioxide (scCO2)-assisted drying technology is herein proposed for biomedical applications. Different concentrations of silk fibroin (3%, 5%, and 7% (w/v)) were explored to investigate the potential of this technology to produce size- and porosity-controlled particles. Laser diffraction, helium pycnometry, nitrogen adsorption-desorption analysis and Fourier Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) spectroscopy were performed to characterize the physicochemical properties of the material. The enzymatic degradation profile of the SF aerogel particles was evaluated by immersion in protease XIV solution, and the biological properties by cell viability and cell proliferation assays. The obtained aerogel particles were mesoporous with high and concentration dependent specific surface area (203-326 m2/g). They displayed significant antioxidant activity and sustained degradation in the presence of protease XIV enzyme. The in vitro assessment using human dermal fibroblasts (HDF) confirm the particles' biocompatibility, as well as the enhancement in cell viability and proliferation.
Collapse
Affiliation(s)
- Beatriz G. Bernardes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (B.G.B.); (S.B.-S.); (R.M.)
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (B.G.B.); (S.B.-S.); (R.M.)
| | - Carlos Illanes-Bordomás
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (B.G.B.); (S.B.-S.); (R.M.)
| | - Juliana Rosa Dias
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.F.A.)
| | - Nuno M. F. Alves
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.F.A.)
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (B.G.B.); (S.B.-S.); (R.M.)
- Biochemistry Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (B.G.B.); (S.B.-S.); (R.M.)
| |
Collapse
|
11
|
Saleh WM, Ahmad MI, Yahya EB, H P S AK. Nanostructured Bioaerogels as a Potential Solution for Particulate Matter Pollution. Gels 2023; 9:575. [PMID: 37504454 PMCID: PMC10379271 DOI: 10.3390/gels9070575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications.
Collapse
Affiliation(s)
- Wafa Mustafa Saleh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
12
|
Sellitto MR, Amante C, Aquino RP, Russo P, Rodríguez-Dorado R, Neagu M, García-González CA, Adami R, Del Gaudio P. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds. Gels 2023; 9:492. [PMID: 37367162 DOI: 10.3390/gels9060492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
The production of aerogels for different applications has been widely known, but the use of polysaccharide-based aerogels for pharmaceutical applications, specifically as drug carriers for wound healing, is being recently explored. The main focus of this work is the production and characterization of drug-loaded aerogel capsules through prilling in tandem with supercritical extraction. In particular, drug-loaded particles were produced by a recently developed inverse gelation method through prilling in a coaxial configuration. Particles were loaded with ketoprofen lysinate, which was used as a model drug. The core-shell particles manufactured by prilling were subjected to a supercritical drying process with CO2 that led to capsules formed by a wide hollow cavity and a tunable thin aerogel layer (40 μm) made of alginate, which presented good textural properties in terms of porosity (89.9% and 95.3%) and a surface area up to 417.0 m2/g. Such properties allowed the hollow aerogel particles to absorb a high amount of wound fluid moving very quickly (less than 30 s) into a conformable hydrogel in the wound cavity, prolonging drug release (till 72 h) due to the in situ formed hydrogel that acted as a barrier to drug diffusion.
Collapse
Affiliation(s)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Paola Russo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | | | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, R+D Pharma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Renata Adami
- Department of Physics "E. R. Caianiello", University of Salerno, 84084 Fisciano, SA, Italy
- NanoMates Center, University of Salerno, 84084 Fisciano, SA, Italy
| | | |
Collapse
|
13
|
Collier M. What is, how to manage, and what are the effects of wound exudate? Introducing the 3M Exudate Pathway. Br J Community Nurs 2023; 28:S27-S38. [PMID: 37262094 DOI: 10.12968/bjcn.2023.28.sup6.s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Mark Collier
- Nurse Consultant and Associate Lecturer-Tissue Viability UK (Independent and University of Lincoln) and Chair of the Leg Ulcer Forum (England and Wales)
| |
Collapse
|
14
|
Athamneh T, Hajnal A, Al-Najjar MAA, Alshweiat A, Obeidat R, Awad AA, Al-Alwany R, Keitel J, Wu D, Kieserling H, Rohn S, Keil C, Gurikov P. In vivo tests of a novel wound dressing based on agar aerogel. Int J Biol Macromol 2023; 239:124238. [PMID: 37003386 DOI: 10.1016/j.ijbiomac.2023.124238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Aerogels, especially bio-based ones, present a promising option for wound dressing; specifically, because of their low toxicity, high stability, bio-compatibility, and good biological performance. In this study, agar aerogel was prepared and evaluated as novel wound dressing material in an in vivo rat study. Agar hydrogel was prepared by thermal gelation, after that the water inside the gel was exchanged with ethanol, and finally the alcogel was dried by supercritical CO2. The textural and rheological properties of the prepared aerogel were characterized, showing that the prepared agar aerogels possess high porosity (97-98 %), high surface area (250-330 m2g-1) as well as good mechanical properties and easiness of removal from the wound site. The results of the in vivo experiments macroscopically demonstrate the tissue compatibility of the aerogels in dorsal interscapular injured rat tissue and a shorter wound healing time comparable to that of gauze-treated animals. The histological analysis underpins the reorganisation and healing of the tissue for the injured skin of rats treated with agar aerogel wound dressing within the studied time frame.
Collapse
Affiliation(s)
- Tamara Athamneh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anja Hajnal
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - Mohammad A A Al-Najjar
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Areen Alshweiat
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Rana Obeidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Alaa Abu Awad
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Ruaa Al-Alwany
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Amman 11931, Jordan
| | - Julia Keitel
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Helena Kieserling
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany.
| |
Collapse
|
15
|
Chelu M, Popa M, Ozon EA, Pandele Cusu J, Anastasescu M, Surdu VA, Calderon Moreno J, Musuc AM. High-Content Aloe vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023; 15:polym15051312. [PMID: 36904552 PMCID: PMC10007233 DOI: 10.3390/polym15051312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| |
Collapse
|
16
|
Alavi F, Ciftci ON. Effect of starch type and chitosan supplementation on physicochemical properties, morphology, and oil structuring capacity of composite starch bioaerogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Milovanovic S, Lukic I, Horvat G, Novak Z, Frerich S, Petermann M, García-González CA. Green Processing of Neat Poly(lactic acid) Using Carbon Dioxide under Elevated Pressure for Preparation of Advanced Materials: A Review (2012-2022). Polymers (Basel) 2023; 15:polym15040860. [PMID: 36850144 PMCID: PMC9960451 DOI: 10.3390/polym15040860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
This review provides a concise overview of up-to-date developments in the processing of neat poly(lactic acid) (PLA), improvement in its properties, and preparation of advanced materials using a green medium (CO2 under elevated pressure). Pressurized CO2 in the dense and supercritical state is a superior alternative medium to organic solvents, as it is easily available, fully recyclable, has easily tunable properties, and can be completely removed from the final material without post-processing steps. This review summarizes the state of the art on PLA drying, impregnation, foaming, and particle generation by the employment of dense and supercritical CO2 for the development of new materials. An analysis of the effect of processing methods on the final material properties was focused on neat PLA and PLA with an addition of natural bioactive components. It was demonstrated that CO2-assisted processes enable the control of PLA properties, reduce operating times, and require less energy compared to conventional ones. The described environmentally friendly processing techniques and the versatility of PLA were employed for the preparation of foams, aerogels, scaffolds, microparticles, and nanoparticles, as well as bioactive materials. These PLA-based materials can find application in tissue engineering, drug delivery, active food packaging, compostable packaging, wastewater treatment, or thermal insulation, among others.
Collapse
Affiliation(s)
- Stoja Milovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland
- Correspondence: (S.M.); (I.L.)
| | - Ivana Lukic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: (S.M.); (I.L.)
| | - Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Sulamith Frerich
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Marcus Petermann
- Faculty of Mechanical Engineering, Institute of Thermo and Fluid Dynamics, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Carlos A. García-González
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Hybrid Polylactic-Acid-Pectin Aerogels: Synthesis, Structural Properties, and Drug Release. Polymers (Basel) 2023; 15:polym15020407. [PMID: 36679286 PMCID: PMC9862002 DOI: 10.3390/polym15020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Wound-dressing materials often include other materials stimulating wound healing. This research describes the first formulation of biodegradable hybrid aerogels composed of polylactic acid and pectin. The prepared hybrid material showed a highly porous structure with a surface area of 166 ± 22.6 m2·g-1. The addition of polylactic acid may have decreased the surface area of the pure pectin aerogel, but it improved the stability of the material in simulated body fluid (SBF). The pure pectin aerogel showed a high swelling and degradation ratio after 3 h. The addition of the polylactic acid prolonged its stability in the simulated body fluid from 24 h to more than one week, depending on the amount of polylactic acid. Biodegradable aerogels were loaded with indomethacin and diclofenac sodium as model drugs. The entrapment efficiencies were 63.4% and 62.6% for indomethacin and diclofenac sodium, respectively. Dissolution of both drugs was prolonged up to 2 days. Finally, sodium percarbonate and calcium peroxide were incorporated into the bioaerogels as chemical oxygen sources, to evaluate oxygen generation for potential wound healing applications.
Collapse
|
19
|
A Comprehensive Review on Bio-Based Materials for Chronic Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020604. [PMID: 36677658 PMCID: PMC9861360 DOI: 10.3390/molecules28020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.
Collapse
|
20
|
Zhong D, Zhang H, Ma Z, Xin Q, Lu Y, Shi P, Qin M, Li J, Ding C. Recent advancements in wound management: Tailoring superwettable bio-interfaces. Front Bioeng Biotechnol 2022; 10:1106267. [PMID: 36568289 PMCID: PMC9767982 DOI: 10.3389/fbioe.2022.1106267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Skin tissue suffering from severe damages fail in self-regeneration. Proper wound dressings are highly demanded to protect the wound region and accelerate the healing process. Although large efforts have been devoted, there still exist disturbing dilemmas for traditional dressings. The exquisite design of bio-interface upon superwettable materials opens new avenues and addresses the problems perfectly. However, the advancements in this area have rarely been combed. In light of this, this minireview attempts to summarize recent strategies of superwettable bio-interfaces for wound care. Concentrating on the management of biofluids (blood and exudate), we described superwettable hemostatic bio-interfaces first, and then introduced the management of exudates. Finally, the perspective of this area was given. This minireview gives a comprehensive outline for readers and is believed to provide references for the design of superwettable materials in biomedical area.
Collapse
Affiliation(s)
| | - Hongbo Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengxin Ma
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Qiangwei Xin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, China,State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, China,*Correspondence: Ping Shi, ; Chunmei Ding,
| | - Meng Qin
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Jianshu Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Chunmei Ding
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China,*Correspondence: Ping Shi, ; Chunmei Ding,
| |
Collapse
|
21
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
22
|
Remuiñán-Pose P, López-Iglesias C, Iglesias-Mejuto A, Mano JF, García-González CA, Rial-Hermida MI. Preparation of Vancomycin-Loaded Aerogels Implementing Inkjet Printing and Superhydrophobic Surfaces. Gels 2022; 8:gels8070417. [PMID: 35877502 PMCID: PMC9319758 DOI: 10.3390/gels8070417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds are physical traumas that significantly impair the quality of life of over 40 million patients worldwide. Aerogels are nanostructured dry porous materials that can act as carriers for the local delivery of bioactive compounds at the wound site. However, aerogels are usually obtained with low drug loading yields and poor particle size reproducibility and urges the implementation of novel and high-performance processing strategies. In this work, alginate aerogel particles loaded with vancomycin, an antibiotic used for the treatment of Staphylococcus aureus infections, were obtained through aerogel technology combined with gel inkjet printing and water-repellent surfaces. Alginate aerogel particles showed high porosity, large surface area, a well-defined spherical shape and a reproducible size (609 ± 37 μm). Aerogel formulation with vancomycin loadings of up to 33.01 ± 0.47 μg drug/mg of particle were obtained with sustained-release profiles from alginate aerogels for more than 7 days (PBS pH 7.4 medium). Overall, this novel green aerogel processing strategy allowed us to obtain nanostructured drug delivery systems with improved drug loading yields that can enhance the current antibacterial treatments for chronic wounds.
Collapse
Affiliation(s)
- Patricia Remuiñán-Pose
- I + D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.R.-P.); (C.L.-I.); (A.I.-M.)
| | - Clara López-Iglesias
- I + D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.R.-P.); (C.L.-I.); (A.I.-M.)
| | - Ana Iglesias-Mejuto
- I + D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.R.-P.); (C.L.-I.); (A.I.-M.)
| | - Joao F. Mano
- CICECO Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos A. García-González
- I + D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.R.-P.); (C.L.-I.); (A.I.-M.)
- Correspondence: (C.A.G.-G.); (M.I.R.-H.); Tel.: +34-881815252 (M.I.R.-H.)
| | - M. Isabel Rial-Hermida
- I + D Farma Group (GI-1645), Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.R.-P.); (C.L.-I.); (A.I.-M.)
- Correspondence: (C.A.G.-G.); (M.I.R.-H.); Tel.: +34-881815252 (M.I.R.-H.)
| |
Collapse
|
23
|
Long L, Liu W, Hu C, Yang L, Wang Y. Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomater Sci 2022; 10:4058-4076. [PMID: 35758152 DOI: 10.1039/d2bm00620k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As the prevalence of diabetes increases year by year and the aging population continues to intensify in the world, chronic wounds such as diabetic foot ulcers and pressure ulcers have become serious problems that threaten people's health, and have brought an enormous burden to the world healthcare system. Conventional clinical treatment of chronic wounds relies on non-specific topical care (including debridement, infection/inflammation control, and frequent wound dressing changes), which can alleviate disease progression and reduce patient suffering to a certain extent, but the overall cure rate is less than 50% and the recurrence rate is high. Traditional wound dressings such as gauze, hydrocolloids, films and foams are single-function, acting as a physical barrier or absorbing exudates, and cannot meet all the needs of the entire chronic wound healing process. Recently, a large number of novel functional dressings have been reported for chronic wound repair. Based on the progress on wound dressings in recent years and the relevant research experience of our group, the review summarizes and discusses the progress on multifunctional wound dressings (such as microneedles, sponges and hydrogels) with anti-inflammatory, antioxidant, antibacterial, pro-angiogenic and tissue adhesive functions in detail. At the same time, the various responsive mechanisms (in vivo microenvironment or in vitro stimulation) of the smart multifunctional wound dressing are also analyzed in detail. It is expected that the review could provide some inspiration and suggestions for research on dressings for chronic wound treatment.
Collapse
Affiliation(s)
- Linyu Long
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Wenqi Liu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
24
|
Iglesias-Mejuto A, García-González CA. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14061211. [PMID: 35335542 PMCID: PMC8951756 DOI: 10.3390/polym14061211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The fabrication of bioactive three-dimensional (3D) hydrogel scaffolds from biocompatible materials with a complex inner structure (mesoporous and macroporous) and highly interconnected porosity is crucial for bone tissue engineering (BTE). 3D-printing technology combined with aerogel processing allows the fabrication of functional nanostructured scaffolds from polysaccharides for BTE with personalized geometry, porosity and composition. However, these aerogels are usually fragile, with fast biodegradation rates in biological aqueous fluids, and they lack the sterility required for clinical practice. In this work, reinforced alginate-hydroxyapatite (HA) aerogel scaffolds for BTE applications were obtained by a dual strategy that combines extrusion-based 3D-printing and supercritical CO2 gel drying with an extra crosslinking step. Gel ageing in CaCl2 solutions and glutaraldehyde (GA) chemical crosslinking of aerogels were performed as intermediate and post-processing reinforcement strategies to achieve highly crosslinked aerogel scaffolds. Nitrogen adsorption–desorption (BET) and SEM analyses were performed to assess the textural parameters of the resulting alginate-HA aerogel scaffolds. The biological evaluation of the aerogel scaffolds was performed regarding cell viability, hemolytic activity and bioactivity for BTE. The impact of scCO2-based post-sterilization treatment on scaffold properties was also assessed. The obtained aerogels were dual porous, bio- and hemocompatible, as well as endowed with high bioactivity that is dependent on the HA content. This work is a step forward towards the optimization of the physicochemical performance of advanced biomaterials and their sterilization.
Collapse
|
25
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
26
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
27
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
28
|
Király G, Egu JC, Hargitai Z, Kovács I, Fábián I, Kalmár J, Szemán-Nagy G. Mesoporous Aerogel Microparticles Injected into the Abdominal Cavity of Mice Accumulate in Parathymic Lymph Nodes. Int J Mol Sci 2021; 22:9756. [PMID: 34575919 PMCID: PMC8465913 DOI: 10.3390/ijms22189756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mesoporous aerogel microparticles are promising drug delivery systems. However, their in vivo biodistribution pathways and health effects are unknown. Suspensions of fluorescein-labeled silica-gelatin hybrid aerogel microparticles were injected into the peritoneum (abdominal cavity) of healthy mice in concentrations of 52 and 104 mg kg-1 in a 3-week-long acute toxicity experiment. No physiological dysfunctions were detected, and all mice were healthy. An autopsy revealed that the aerogel microparticles were not present at the site of injection in the abdominal cavity at the end of the experiment. The histological study of the liver, spleen, kidneys, thymus and lymphatic tissues showed no signs of toxicity. The localization of the aerogel microparticles in the organs was studied by fluorescence microscopy. Aerogel microparticles were not detected in any of the abdominal organs, but they were clearly visible in the cortical part of the parathymic lymph nodes, where they accumulated. The accumulation of aerogel microparticles in parathymic lymph nodes in combination with their absence in the reticuloendothelial system organs, such as the liver or spleen, suggests that the microparticles entered the lymphatic circulation. This biodistribution pathway could be exploited to design passive targeting drug delivery systems for flooding metastatic pathways of abdominal cancers that spread via the lymphatic circulation.
Collapse
Affiliation(s)
- Gábor Király
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| | - John Chinonso Egu
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Zoltán Hargitai
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovács
- Department of Pathology, Kenézy University Hospital, University of Debrecen, 2-28 Bartók Béla Street, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - István Fábián
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - József Kalmár
- MTA-DE ELKH Homogeneous Catalysis and Reaction Mechanisms Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (J.C.E.); (I.F.)
| | - Gábor Szemán-Nagy
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (G.K.); (G.S.-N.)
| |
Collapse
|