1
|
Meena P, Singh P, Warkar SG. Tailoring pH-sensitive carboxymethyl tamarind kernel gum-based hydrogel for an efficient delivery of hydrophobic drug indomethacin. Int J Biol Macromol 2024; 280:136029. [PMID: 39332569 DOI: 10.1016/j.ijbiomac.2024.136029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Polyacrylamide hydrogels have gained attention in the drug delivery field for their pH-dependent nature. Nevertheless, their limited degradability and lower entrapment efficiency for hydrophobic drugs hinder their utility in controlled drug release. This research aims to design a degradable pH-sensitive hydrogel for delivering the hydrophobic drug indomethacin to the colon. This work developed and optimized the hydrogels based on β-cyclodextrin, carboxymethyl tamarind kernel gum, and polyacrylamide with varying amounts of polyethylene glycol diacrylate. The optimized hydrogel exhibits 76.52 % gel fraction, 89.21 % porosity, 1000.27 % swelling, and 90.0 % equilibrium water content. The hydrogel was characterized using Attenuated Total Reflection-Fourier Transform Infrared spectroscopy, confirming the successful crosslinking of the synthesized hydrogel. Powder X-ray Diffraction revealed their amorphous nature while Scanning Electron Microscopy showed a porous surface morphology of the hydrogel. Moreover, rheology confirmed the hydrogel's elastic nature. Notably, the hydrogel demonstrated a drug release of 60.26 % at pH 7.4. Kinetic modelling of indomethacin release data indicated a Fickian diffusion release mechanism. Cytotoxicity tests on HCT-116 cells showed 79 % viability, and the hydrogel fully degraded within 10 days. These results confirmed the potential of synthesized β-CD/PAM/CMTKG hydrogel for controlled indomethacin delivery to the colon.
Collapse
Affiliation(s)
- Priyanka Meena
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India.
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India.
| |
Collapse
|
2
|
Barrientos BA, Real DA, Rossetti A, Ambrosioni FE, Allemandi DA, Palma SD, Real JP. 3D printed scaffolds as delivery devices for nanocrystals: A proof of concept loading Atorvastatin with enhanced properties for sublingual route of administration. Int J Pharm 2024; 661:124396. [PMID: 38944168 DOI: 10.1016/j.ijpharm.2024.124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Increasing the solubility of drugs is a recurrent objective of pharmaceutical research, and one of the most widespread strategies today is the formulation of nanocrystals (NCs). Beyond the many advantages of formulating NCs, their incorporation into solid dosage forms remains a challenge that limits their use. In this work, we set out to load Atorvastatin NCs (ATV-NCs) in a delivery device by combining 3D scaffolds with an "in situ" loading method such as freeze-drying. When comparing two infill patterns for the scaffolds at two different percentages, the one with the highest NCs load was chosen (Gyroid 20 % infill pattern, 13.8 ± 0.5 mg). Colloidal stability studies of NCs suggest instability in acidic media, and therefore, the system is postulated for use as a sublingual device, potentially bypassing stomach and hepatic first-pass effects. An ad hoc dissolution device was developed to mimic the release of actives. The nanometric size and properties acquired in the process were maintained, mainly in the dissolution rate and speed, achieving 100 % dissolution of the content in 180 s. Based on these results, the proof of concept represents an innovative approach to converting NCs suspensions into solid dosage forms.
Collapse
Affiliation(s)
- Bruno Andrés Barrientos
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Andrés Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Alan Rossetti
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Franco E Ambrosioni
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| |
Collapse
|
3
|
Mehta T, Aziz H, Sen K, Chang SY, Nagarajan V, Ma AWK, Chaudhuri B. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets. Int J Pharm 2024; 656:124037. [PMID: 38522489 DOI: 10.1016/j.ijpharm.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.
Collapse
Affiliation(s)
- Tanu Mehta
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Hossain Aziz
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Koyel Sen
- Department of Pharmaceutical Sciences, University of Connecticut, USA
| | - Shing-Yun Chang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | | | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, USA; Institute of Materials Science, University of Connecticut, USA.
| |
Collapse
|
4
|
Junnila A, Mortier L, Arbiol A, Harju E, Tomberg T, Hirvonen J, Viitala T, Karttunen AP, Peltonen L. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion. Int J Pharm 2024; 655:124070. [PMID: 38554740 DOI: 10.1016/j.ijpharm.2024.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.
Collapse
Affiliation(s)
- Atte Junnila
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland.
| | - Laurence Mortier
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland; Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Alba Arbiol
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Elina Harju
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Teemu Tomberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anssi-Pekka Karttunen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Yang D, Wang L, Zhang L, Wang M, Li D, Liu N, Liu D, Zhao M, Yao X. Construction, characterization and bioactivity evaluation of curcumin nanocrystals with extremely high solubility and dispersion prepared by ultrasound-assisted method. ULTRASONICS SONOCHEMISTRY 2024; 104:106835. [PMID: 38460473 PMCID: PMC10940784 DOI: 10.1016/j.ultsonch.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Curcumin (Cur) as a natural pigment and biological component, can be widely used in food and beverages. However, the water insolubility of Cur significantly limits its applications. In this study, we prepared a series of nanocrystals via ultrasound-assisted method to improve the solubility and availability of Cur. The results showed artemisia sphaerocephala krasch polysaccharide (ASKP), gum arabic (GA) and wheat protein (WP) were outstanding stabilizers for nanocryatals except traditional agent, poloxamer 188 (F68). The obtained curcumin nanocrystals (Cur-NC) displayed a rod-shaped, crystal- and nanosized structure, and extremely high loading capacity (more over 80 %, w/w). Compared with raw powder, Cur-NC greatly improved the water solubility and dispersibility, and the slow and complete release of Cur of Cur-NC also endowed them excellent antioxidant capacities even at 10 μg/mL. Importantly, as functional factor additive in beverages (e.g. water and emulsion), Cur-NC could increase the content of Cur to at least 600 μg/mL and retain a good stability. Overall, we provided an effective improvement method for the liposoluble active molecules (e.g. Cur) based on the nanocrystals, which not only tremendously enhanced its water solubility, but also strengthened its bioactivity. Notably, our findings broadened the application of water-insoluble compounds.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Xi'an Key Laboratory of Antiviral and Antimicrobial Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Lili Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Linxuan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengqi Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
6
|
Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: From the bench to the clinic. Drug Discov Today 2024; 29:103913. [PMID: 38340952 DOI: 10.1016/j.drudis.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The pharmaceutical industry is grappling with a pressing crisis in drug development characterized by soaring R&D costs, setbacks in blockbuster drug development due to poor aqueous solubility, and patent-related limitations on newly approved molecules. To combat these challenges, diverse strategies have emerged to enhance the solubility and dissolution rates of Biopharmaceutics Classification System (BCS) II and IV drug molecules. Enter drug nanocrystals, a revolutionary nanotechnology-driven, carrier-free colloidal drug delivery system. This review provides a comprehensive insight into nanocrystal strategies, stabilizer selection criteria, preparation methods, advanced characterization techniques, the evolving nanocrystal technological landscape, current market options, and exciting clinical prospects for reshaping the future of pharmaceuticals.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Malheiro V, Duarte J, Veiga F, Mascarenhas-Melo F. Exploiting Pharma 4.0 Technologies in the Non-Biological Complex Drugs Manufacturing: Innovations and Implications. Pharmaceutics 2023; 15:2545. [PMID: 38004525 PMCID: PMC10674941 DOI: 10.3390/pharmaceutics15112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The pharmaceutical industry has entered an era of transformation with the emergence of Pharma 4.0, which leverages cutting-edge technologies in manufacturing processes. These hold tremendous potential for enhancing the overall efficiency, safety, and quality of non-biological complex drugs (NBCDs), a category of pharmaceutical products that pose unique challenges due to their intricate composition and complex manufacturing requirements. This review attempts to provide insight into the application of select Pharma 4.0 technologies, namely machine learning, in silico modeling, and 3D printing, in the manufacturing process of NBCDs. Specifically, it reviews the impact of these tools on NBCDs such as liposomes, polymeric micelles, glatiramer acetate, iron carbohydrate complexes, and nanocrystals. It also addresses regulatory challenges associated with the implementation of these technologies and presents potential future perspectives, highlighting the incorporation of digital twins in this field of research as it seems to be a very promising approach, namely for the optimization of NBCDs manufacturing processes.
Collapse
Affiliation(s)
- Vera Malheiro
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
| | - Joana Duarte
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
| | - Francisco Veiga
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| |
Collapse
|
8
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
9
|
Mathiyalagan R, Sjöholm E, Manandhar S, Lakio S, Rosenholm JM, Kaasalainen M, Wang X, Sandler N. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing. Eur J Pharm Sci 2023; 188:106497. [PMID: 37329925 DOI: 10.1016/j.ejps.2023.106497] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.
Collapse
Affiliation(s)
- Rathna Mathiyalagan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | - Satu Lakio
- Nanoform Finland Ltd, Viikinkaari 4, 00790 Helsinki, Finland
| | | | | | - Xiaoju Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; Nanoform Finland Ltd, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
10
|
Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, Jiménez-Valdés MT, Pineda-Pérez E, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chávez SA, Magaña JJ, Leyva-Gómez G. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023; 15:1914. [PMID: 37514100 PMCID: PMC10384592 DOI: 10.3390/pharmaceutics15071914] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.
Collapse
Affiliation(s)
- Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sonia J Farah
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - María Teresa Jiménez-Valdés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Emiliano Pineda-Pérez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Sergio Alberto Bernal-Chávez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex-Hda. de Sta. Catarina Mártir, Cholula 72820, Puebla, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the Development of Caffeine Oral Solid Form 3D Printed by Semi-Solid Extrusion for Application in Neonates. AAPS PharmSciTech 2023; 24:122. [PMID: 37225888 DOI: 10.1208/s12249-023-02582-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Apnea of prematurity can be treated with a body-weight-adjusted dosage of caffeine. Semi-solid extrusion (SSE) 3D printing represents an interesting approach to finely tailor personalized doses of active ingredients. To improve compliance and ensure the right dose in infants, drug delivery systems such as oral solid forms (orodispersible film, dispersive form, and mucoadhesive form) can be considered. The aim of this work was to obtain a flexible-dose system of caffeine by SSE 3D printing by testing different excipients and printing parameters. Gelling agents (sodium alginate (SA) and hydroxypropylmethyl cellulose (HPMC)) were used to obtain a drug-loaded hydrogel matrix. Disintegrants (sodium croscarmellose (SC) and crospovidone (CP)) were tested for get rapid release of caffeine. The 3D models were patterned by computer-aided design with variable thickness, diameter, infill densities, and infill patterns. The oral forms produced from the formulation containing 35% caffeine, 8.2% SA, 4.8% HPMC, and 52% SC (w/w) were found to have good printability, achieving doses approaching to those used in neonatology (between 3 and 10 mg of caffeine for infants weighing approximately between 1 and 4 kg). However, disintegrants, especially SC, acted more as binder/filler, showing interesting properties to maintain the shape after extrusion and enhance printability without a significant effect on caffeine release.
Collapse
Affiliation(s)
- Agnès Roche
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Noelia M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| | - Adrien Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Sylvie Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
12
|
Witika BA, Choonara YE, Demana PH. A SWOT analysis of nano co-crystals in drug delivery: present outlook and future perspectives. RSC Adv 2023; 13:7339-7351. [PMID: 36895773 PMCID: PMC9989744 DOI: 10.1039/d3ra00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The formulation of poorly soluble drugs is an intractable challenge in the field of drug design, development and delivery. This is particularly problematic for molecules that exhibit poor solubility in both organic and aqueous media. Usually, this is difficult to resolve using conventional formulation strategies and has resulted in many potential drug candidates not progressing beyond early stage development. Furthermore, some drug candidates are abandoned due to toxicity or have an undesirable biopharmaceutical profile. In many instances drug candidates do not exhibit desirable processing characteristics to be manufactured at scale. Nanocrystals and co-crystals, are progressive approaches in crystal engineering that can solve some of these limitations. While these techniques are relatively facile, they also require optimisation. Combining crystallography with nanoscience can yield nano co-crystals that feature the benefits of both fields, resulting in additive or synergistic effects to drug discovery and development. Nano co-crystals as drug delivery systems can potentially improve drug bioavailability and reduce the side-effects and pill burden of many drug candidates that require chronic dosing as part of treatment regimens. In addition, nano co-crystals are carrier-free colloidal drug delivery systems with particle sizes ranging between 100 and 1000 nm comprising a drug molecule, a co-former and a viable drug delivery strategy for poorly soluble drugs. They are simple to prepare and have broad applicability. In this article, the strengths, weaknesses, opportunities and threats to the use of nano co-crystals are reviewed and a concise incursion into the salient aspects of nano co-crystals is undertaken.
Collapse
Affiliation(s)
- Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences University of the Witwatersrand 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Patrick H Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| |
Collapse
|
13
|
Myung N, Jin S, Cho HJ, Kang HW. User-designed device with programmable release profile for localized treatment. J Control Release 2022; 352:685-699. [PMID: 36328077 DOI: 10.1016/j.jconrel.2022.10.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional printing enables precise and on-demand manufacture of customizable drug delivery systems to advance healthcare toward the goal of personalized medicine. However, major challenges remain in realizing personalized drug delivery that fits a patient-specific drug dosing schedule using local drug delivery systems. In this study, a user-designed device is developed as implantable therapeutics that can realize personalized drug release kinetics by programming the inner structural design on the microscale. The drug release kinetics required for various treatments, including dose-dense therapy and combination therapy, can be implemented by controlling the dosage and combination of drugs along with the rate, duration, initiation time, and time interval of drug release according to the device layer design. After implantation of the capsular device in mice, the in vitro-in vivo and pharmacokinetic evaluation of the device is performed, and the therapeutic effect of the developed device is achieved through the local release of doxorubicin. The developed user-designed device provides a novel platform for developing next-generation drug delivery systems for personalized and localized therapy.
Collapse
Affiliation(s)
- Noehyun Myung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea
| | - Seokha Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea
| | - Hyung Joon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, 44919 Ulsan, Republic of Korea.
| |
Collapse
|
14
|
Deon M, dos Santos J, de Andrade DF, Beck RCR. A critical review of traditional and advanced characterisation tools to drive formulators towards the rational development of 3D printed oral dosage forms. Int J Pharm 2022; 628:122293. [DOI: 10.1016/j.ijpharm.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
15
|
Wang N, Shi H, Yang S. 3D printed oral solid dosage form: Modified release and improved solubility. J Control Release 2022; 351:407-431. [PMID: 36122897 DOI: 10.1016/j.jconrel.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Oral solid dosage form is currently the most common used form of drug. 3D Printing, also known as additive manufacturing (AM), can quickly print customized and individualized oral solid dosage form on demand. Compared with the traditional tablet manufacturing process, 3D Printing has many advantages. By rationally selecting the formulation composition and cleverly designing the printing structure, 3D printing can improve the solubility of the drug and achieve precise modify of the drug release. 3D printed oral solid dosage form, however, still has problems such as limitations in formulation selection. And the selection process of the formulation lacks scientificity and standardization. Structural design of some 3D printing approaches is relatively scarce. This article reviews the formulation selection and structure design of 3D printed oral solid dosage form, providing more ideas for achieving modified drug release and solubility improvement of 3D printed oral solid dosage form through more scientific and extensive formulation selection and more sophisticated structural design.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China; Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
16
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Funk NL, Fantaus S, Beck RCR. Immediate release 3D printed oral dosage forms: How different polymers have been explored to reach suitable drug release behaviour. Int J Pharm 2022; 625:122066. [PMID: 35926751 DOI: 10.1016/j.ijpharm.2022.122066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) printing has been gaining attention as a new technological approach to obtain immediate release (IR) dosage forms. The versatility conferred by 3D printing techniques arises from the suitability of using different polymeric materials in the production of solids with different porosities, geometries, sizes, and infill patterns. The appropriate choice of polymer can facilitate in reaching IR specifications and afford other specific properties to 3D printed solid dosage forms. This review aims to provide an overview of the polymers that have been employed in the development of IR 3D printed dosage forms, mainly considering their in vitro drug release behaviour. The physicochemical and mechanical properties of the IR 3D printed dosage forms will also be discussed, together with the manufacturing process strategies. Up to now, methacrylic polymers, cellulosic polymers, vinyl derivatives, glycols and different polymeric blends have been explored to produce IR 3D printed dosage forms. Their effects on drug release profiles are critically discussed here, giving a complete overview to drive formulators towards a rational choice of polymeric material and thus contributing to future studies in 3D printing of pharmaceuticals.
Collapse
Affiliation(s)
- Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Stephani Fantaus
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
18
|
de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: An original application of the semisolid extrusion technique. Int J Pharm 2022; 624:122029. [PMID: 35853566 DOI: 10.1016/j.ijpharm.2022.122029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Semisolid extrusion is a layer-by-layer 3D printing technique that produces objects from gels or pastes. This process can be carried out at room temperature, without using a light source, and has been explored in pharmaceutics in the last few years. In this regard, our group hypothesized its suitability for the production of three-dimensional (3D) printed nanomedicines containing drug-loaded organic nanocarriers. In this study, the original application of the semisolid extrusion was evaluated to produce redispersible 3D printed oral solid forms containing drug-loaded polymeric nanocapsules. A carboxymethyl cellulose hydrogel containing resveratrol and curcumin co-encapsulated in nanocapsules was prepared, and the nanocapsules did not change its complex viscosity and yield stress. Homogeneous and yellow cylindrical-shaped solid forms were printed, with a mean weight of 0.102 ± 0.015 g, a polyphenol content of approximately 160 μg/unit, disintegration time of <45 min, and recovery of the nanosized carriers. The polyphenols were completely released from the solid forms after 8 h, although part of them remained encapsulated in the nanocapsules. This study represents a proof of concept concerning the use of semisolid extrusion to produce 3D printed forms composed of polymeric nanocapsules in a one-step process. It proposes an original platform for the development of solid nanomedicines from liquid aqueous nanocapsule suspensions.
Collapse
Affiliation(s)
- Thayse Viana de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cesar Liberato Petzhold
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves - Agronomia, Porto Alegre, RS 90650-001, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
19
|
Di H. Educational Psychology-Empowered Creative Practice Strategy and Educational Countermeasures for Cinematography Major. Front Psychol 2022; 13:913294. [PMID: 35859838 PMCID: PMC9289566 DOI: 10.3389/fpsyg.2022.913294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
This work aims to improve Cinematography Majors' creative orientation and practical skills and improve related teaching quality. Firstly, this work analyzes the theoretical knowledge and main working principles of Educational Psychology (EPSY). Then, it reviews the current situation and characteristics of the Cinematography teaching through a Questionnaire Survey (QS). Consequently, an EPSY-based teaching effect evaluation model is proposed for Cinematography Majors. The results show that genders have great differences in Cinematography Majors' theoretical knowledge and creative orientation. Girls' theoretical knowledge learning effect is better than boys, with about 84% qualification rate at best. Boys' creative orientation learning effect is better than girls, with the highest qualification rate of about 84%. Meanwhile, students' theoretical knowledge differs greatly from grade to grade and the learning effect increase with the grade. Nevertheless, students' overall creative orientation is not satisfactory. Lastly, students' theoretical knowledge differs greatly given different artistic backgrounds, but the difference in creative orientations is small. Thus, the school can carry out targeted teaching for students according to different genders, grades, and artistic backgrounds, to comprehensively improve the teaching effect of Cinematography. The finding provides technical support and educational countermeasures for improving the teaching effect of Cinematography and the reform of Cinematography teaching.
Collapse
Affiliation(s)
- Hanwei Di
- School of Theatre Film & Television, Communication University of China, Beijing, China
| |
Collapse
|
20
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
21
|
Three-Dimensional (3D) Printing in Cancer Therapy and Diagnostics: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15060678. [PMID: 35745597 PMCID: PMC9229198 DOI: 10.3390/ph15060678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Three-dimensional (3D) printing is a technique where the products are printed layer-by-layer via a series of cross-sectional slices with the exact deposition of different cell types and biomaterials based on computer-aided design software. Three-dimensional printing can be divided into several approaches, such as extrusion-based printing, laser-induced forward transfer-based printing systems, and so on. Bio-ink is a crucial tool necessary for the fabrication of the 3D construct of living tissue in order to mimic the native tissue/cells using 3D printing technology. The formation of 3D software helps in the development of novel drug delivery systems with drug screening potential, as well as 3D constructs of tumor models. Additionally, several complex structures of inner tissues like stroma and channels of different sizes are printed through 3D printing techniques. Three-dimensional printing technology could also be used to develop therapy training simulators for educational purposes so that learners can practice complex surgical procedures. The fabrication of implantable medical devices using 3D printing technology with less risk of infections is receiving increased attention recently. A Cancer-on-a-chip is a microfluidic device that recreates tumor physiology and allows for a continuous supply of nutrients or therapeutic compounds. In this review, based on the recent literature, we have discussed various printing methods for 3D printing and types of bio-inks, and provided information on how 3D printing plays a crucial role in cancer management.
Collapse
|
22
|
Drug-loaded mesoporous silica on carboxymethyl cellulose hydrogel: Development of innovative 3D printed hydrophilic films. Int J Pharm 2022; 620:121750. [PMID: 35421531 DOI: 10.1016/j.ijpharm.2022.121750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
3D printing has been explored as an emerging technology for the development of versatile and printable materials for drug delivery. However, the alliance of 3D printing and nanomaterials has, to date, been little explored in pharmaceutics. Herein, a mesoporous silica with nanostructured pores, SBA-15, was used as a drug carrier for triamcinolone acetonide, a hydrophobic drug, with the aim of incorporating the drug formulation in a hydrophilic printable ink. The adsorption of the drug in the SBA-15 pores was confirmed by the decrease in its surface area and pore volume, along with an increase in the apparent aqueous solubility of triamcinolone acetonide, as shown by in vitro release studies. Thereafter, a hydrophilic ink composed of carboxymethyl cellulose containing drug-loaded SBA-15 was formulated and 3D printed as hydrophilic polymeric film using the semisolid extrusion technique (SSE). The 3D printed films showed complete drug release after 12 h, and the presence of the triamcinolone acetonide-loaded SBA-15 improved their in vitro mucoadhesion, suggesting their promising application in oral mucosa treatments. Besides representing an innovative platform to develop water-based mucoadhesive formulations containing a hydrophobic drug, this is the first report proposing the development of SSE 3D printed nanomedicines containing drug-loaded mesoporous silica.
Collapse
|
23
|
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug Nanocrystals for Active Tumor-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040797. [PMID: 35456631 PMCID: PMC9026472 DOI: 10.3390/pharmaceutics14040797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
24
|
|
25
|
Aravindaraj N, Suresh J, Krishnaswami V, Alagarsamy S, Kandasamy R. Guar gum based oral films for hypertensive urgencies. Nat Prod Res 2022; 36:6470-6473. [PMID: 35167380 DOI: 10.1080/14786419.2022.2039919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Guar gum (GG) is a natural film forming biopolymer used as a drug delivery media for Telmisartan (TS). TS is a poorly water-soluble anti-hypertensive agent with low bioavailability.The present work has been hypothesized by converting TS into nanocrystals by high shear homogenisation to enhance the solubility thereby the bioavailability is expected to get enhanced. TS-NC-GG-OF was formulated by solvent casting method using GG by varying the disintegrant ratio.Telmisartan nanocrystals showed particle size of 441.70 ± 35.28 nm, surface charge of -20.86 ± 0.55 mV and reduced crystalline pattern. The amount of TS present per mg ofnanocrystals is 0.33 mg. The developed TS-NC-GG-OF was circular, creamy white colour with desired physicochemical properties. The in vitro release studies performed by beaker model showed an immediate release pattern.This proof of concept specifies that the TS-NC-GG-OF may be a better choice for hypertensive emergencies using the natural excipient Guar gum.
Collapse
Affiliation(s)
- Nirmal Aravindaraj
- Centre for Excellence in Nano bio-Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Jeseeta Suresh
- Centre for Excellence in Nano bio-Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nano bio-Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nano bio-Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nano bio-Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
26
|
Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2021.100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|