1
|
Monti A, Scognamiglio PL, Ruvo M, Vitagliano L, Doti N. The Characterization of Multifaceted PREP1 Peptides Provides Insights into Correlations between Spectroscopic and Structural Properties of Amyloid-like Assemblies. Chemistry 2024; 30:e202400846. [PMID: 38682403 DOI: 10.1002/chem.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The widespread ability of proteins and peptides to self-assemble by forming cross-β structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-β association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties. We here demonstrate that the green fluorescence emission of the peptide PREP1[117-132] (λem ~520 nm), can be induced by excitation with UV radiation. The associated unusually large Stokes shift (Δλ ~150 nm) represents, to the best of our knowledge, the first evidence of an internal resonance energy transfer in amyloid-like structures, where the blue emission of some assemblies becomes the excitation radiation for others. Moreover, the characterization of PREP1[117-132] variants provides insights into the sequence/structure and structure/spectroscopic properties relationships. Our data suggests that the green fluorescence is plausibly associated with antiparallel β-sheet states of the peptide whereas parallel β-sheet assemblies are only endowed with blue fluorescence. Notably, the different PREP1[117-132] variants also form assemblies characterized by distinct morphologies. Indeed, the parent peptide and single mutants form compact but structured aggregates whereas most of the double mutants exhibit elongated and highly extended fibers.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Sciences, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via P. Castellino 111, 80131, Napoli, Italy
| |
Collapse
|
2
|
Gallo E, Diaferia C, Smaldone G, Rosa E, Pecoraro G, Morelli G, Accardo A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci Rep 2024; 14:9940. [PMID: 38688930 PMCID: PMC11061151 DOI: 10.1038/s41598-024-60145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Dexamethasone (DEX) is a synthetic analogue of cortisol commonly used for the treatment of different pathological conditions, comprising cancer, ocular disorders, and COVID-19 infection. Its clinical use is hampered by the low solubility and severe side effects due to its systemic administration. The capability of peptide-based nanosystems, like hydrogels (HGs) and nanogels (NGs), to serve as vehicles for the passive targeting of active pharmaceutical ingredients and the selective internalization into leukemic cells has here been demonstrated. Peptide based HGs loaded with DEX were formulated via the "solvent-switch" method, using Fmoc-FF homopeptide as building block. Due to the tight interaction of the drug with the peptidic matrix, a significant stiffening of the gel (G' = 67.9 kPa) was observed. The corresponding injectable NGs, obtained from the sub-micronization of the HG, in the presence of two stabilizing agents (SPAN®60 and TWEEN®60, 48/52 w/w), were found to be stable up to 90 days, with a mean diameter of 105 nm. NGs do not exhibit hemolytic effects on human serum, moreover they are selectively internalized by RS4;11 leukemic cells over healthy PBMCs, paving the way for the generation of new diagnostic strategies targeting onco-hematological diseases.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Elisabetta Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB) "Carlo Pedone", University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
3
|
Boone K, Cloyd AK, Derakovic E, Spencer P, Tamerler C. Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:3342. [PMID: 38037603 PMCID: PMC10686322 DOI: 10.3390/app13053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Collagen is fundamental to a vast diversity of health functions and potential therapeutics. Short peptides targeting collagen are attractive for designing modular systems for site-specific delivery of bioactive agents. Characterization of peptide-protein binding involves a larger number of potential interactions that require screening methods to target physiological conditions. We build a hydropathy-based free energy estimation tool which allows quick evaluation of peptides binding to collagen. Previous studies showed that pH plays a significant role in collagen structure and stability. Our design tool enables probing peptides for their collagen-binding property across multiple pH conditions. We explored binding features of currently known collagen-binding peptides, collagen type I alpha chain 2 sense peptide (TKKTLRT) and decorin LRR-10 (LRELHLNNN). Based on these analyzes, we engineered a collagen-binding peptide with enhanced properties across a large pH range in contrast to LRR-10 pH dependence. To validate our predictions, we used a quantum-dots-based binding assay to compare the coverage of the peptides on type I collagen. The predicted peptide resulted in improved collagen binding. Hydropathy of the peptide-protein pair is a promising approach to finding compatible pairings with minimal use of computational resources, and our method allows for quick evaluation of peptides for binding to other proteins. Overall, the free-energy-based tool provides an alternative computational screening approach that impacts protein interaction search methods.
Collapse
Affiliation(s)
- Kyle Boone
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Aya Kirahm Cloyd
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Emina Derakovic
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, 5109 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045-7609, USA
- Bioengineering Program, University of Kansas, 1132 Learned Hall 1530 W, 15th Street, Lawrence, KS 66045-7609, USA
| |
Collapse
|
4
|
Levin I, Radulescu A, Liberman L, Cohen Y. Block Copolymer Adsorption on the Surface of Multi-Walled Carbon Nanotubes for Dispersion in N, N Dimethyl Formamide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:838. [PMID: 36903716 PMCID: PMC10004759 DOI: 10.3390/nano13050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
This research aims to characterize the adsorption morphology of block copolymer dispersants of the styrene-block-4-vinylpyridine family (S4VP) on the surface of multi-walled carbon nanotubes (MWCNT) in a polar organic solvent, N,N-dimethyl formamide (DMF). Good, unagglomerated dispersion is important in several applications such as fabricating CNT nanocomposites in a polymer film for electronic or optical devices. Small-angle neutron scattering (SANS) measurements, using the contrast variation (CV) method, are used to evaluate the density and extension of the polymer chains adsorbed on the nanotube surface, which can yield insight into the means of successful dispersion. The results show that the block copolymers adsorb onto the MWCNT surface as a continuous coverage of low polymer concentration. Poly(styrene) (PS) blocks adsorb more tightly, forming a 20 Å layer containing about 6 wt.% PS, whereas poly(4-vinylpyridine) (P4VP) blocks emanate into the solvent, forming a thicker shell (totaling 110 Å in radius) but of very dilute (<1 wt.%) polymer concentration. This indicates strong chain extension. Increasing the PS molecular weight increases the thickness of the adsorbed layer but decreases the overall polymer concentration within it. These results are relevant for the ability of dispersed CNTs to form a strong interface with matrix polymers in composites, due to the extension of the 4VP chains allowing for entanglement with matrix chains. The sparse polymer coverage of the CNT surface may provide sufficient space to form CNT-CNT contacts in processed films and composites, which are important for electrical or thermal conductivity.
Collapse
Affiliation(s)
- Irena Levin
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-4) at Heinz Maier-Leibnitz Zentrum (MLZ), D-85747 Garching, Germany
| | - Lucy Liberman
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Hirano A, Kameda T, Wada M, Tanaka T, Kataura H. Coenzyme corona formation on carbon nanotubes leads to disruption of the redox balance in metabolic reactions. NANOSCALE 2023; 15:2340-2353. [PMID: 36637062 DOI: 10.1039/d2nr05213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) have adverse impacts on metabolism in biological systems. The impacts should be associated with interactions of the CNTs with coenzymes, such as nicotinamide adenine dinucleotide (NAD), because most metabolic processes are governed by coenzyme-dependent reactions. This study demonstrates that NAD molecules adsorb onto the CNT surface, leading to the formation of interfacial NAD layers-in other words, a coenzyme corona (coenzyme-based biomolecular corona). Coenzyme corona formation is accompanied by the oxidation of NAD at biological concentrations through electron transfer. Similar phenomena are observed for NAD derivatives. Molecular dynamics simulations indicate that the adsorption of NAD onto CNTs is driven by interactions between the aromaphilic groups of NAD and the CNT surfaces, leading to coenzyme corona formation. Generally, in living biological systems, the balance of NAD redox (NADH/NAD+ redox) is maintained to sustain metabolism. The present results suggest that CNTs affect coenzyme-dependent metabolic reactions by disrupting the redox balance through coenzyme corona formation and subsequent coenzyme oxidation. The proposed molecular mechanism not only advances the fundamental understanding of the biological impact of CNTs in terms of metabolism but also contributes to biological CNT applications.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
6
|
Marin D, Bartkowski M, Kralj S, Rosetti B, D’Andrea P, Adorinni S, Marchesan S, Giordani S. Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010172. [PMID: 36616081 PMCID: PMC9824889 DOI: 10.3390/nano13010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Nanocomposite hydrogels have attracted researchers' attention in recent years to achieve superior performances in a variety of materials applications. In this work, we describe the outcome of three different strategies to combine a self-assembling tripeptide and carbon nano-onions (CNOs), through covalent and non-covalent approaches, into supramolecular and nanostructured hydrogels. Importantly, the tripeptide coated the nano-onions and extended their aqueous dispersions' stability by several hours. Furthermore, CNOs could be loaded in the tripeptide hydrogels at the highest level ever reported for nanocarbons, indicating high compatibility between the components. The materials were formed in phosphate-buffered solutions, thus paving the way for biological applications, and were characterized by several spectroscopic, microscopic, thermogravimetric, and rheological techniques. In vitro experiments demonstrated excellent cytocompatibility.
Collapse
Affiliation(s)
- Davide Marin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Michał Bartkowski
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Beatrice Rosetti
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Paola D’Andrea
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
7
|
Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022; 24:ijms24010456. [PMID: 36613898 PMCID: PMC9820281 DOI: 10.3390/ijms24010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-ion coordination has been widely exploited to control the supramolecular behavior of a variety of building blocks into functional materials. In particular, peptides offer great chemical diversity for metal-binding modes, combined with inherent biocompatibility and biodegradability that make them attractive especially for medicine, sensing, and environmental remediation. The focus of this review is the last 5 years' progress in this exciting field to conclude with an overview of the future directions that this research area is currently undertaking.
Collapse
|
8
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Mañas‐Torres MC, Illescas‐Lopez S, Gavira JA, de Cienfuegos LÁ, Marchesan S. Interactions Between Peptide Assemblies and Proteins for Medicine. Isr J Chem 2022. [DOI: 10.1002/ijch.202200018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mari C. Mañas‐Torres
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - Sara Illescas‐Lopez
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-UGR) Avenida de las Palmeras 4 18100 Armilla, UEQ Granada Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada, (UGR) C. U. Fuentenueva Avda. Severo Ochoa s/n E-18071 Granada
- Instituto de Investigación Biosanitaria ibs Granada Spain
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department University of Trieste Via L. Giorgieri 1 Trieste 34127 Italy
| |
Collapse
|
10
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Fullerenes against COVID-19: Repurposing C 60 and C 70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules 2022; 27:1916. [PMID: 35335283 PMCID: PMC8955646 DOI: 10.3390/molecules27061916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| | | | | | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| |
Collapse
|
11
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Molecular Functionalization and Emergence of Long-Range Spin-Dependent Phenomena in Two-Dimensional Carbon Nanotube Networks. ACS NANO 2021; 15:20056-20066. [PMID: 34870421 DOI: 10.1021/acsnano.1c07739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 μm. This result effectively connects the area of molecular spintronics with that of carbon-based 2D nanoelectronics. By using the versatility of peptide chemistry, we further demonstrate how spin polarization depends on molecular structural features such as chirality as well as molecule-nanotube interactions. A chirality-independent effect was detected in addition to the more common chirality-dependent effect, and the overall spin signal was found to be a combination of both. Finally, the magnetic field dependence of the spin signals has been explored, and the "chirality-dependent" signal has been found to exist only in certain field angles.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071 Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Alberta T6G 1H9, Canada
| |
Collapse
|
12
|
Malik S, Marchesan S. Growth, Properties, and Applications of Branched Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2728. [PMID: 34685169 PMCID: PMC8540255 DOI: 10.3390/nano11102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs.
Collapse
Affiliation(s)
- Sharali Malik
- Karlsruhe Institute of Technology, Institute of Quantum Materials and Technology, Hermann-von-Helmholtz-Platz 1, 76131 Karlsruhe, Germany
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| |
Collapse
|
13
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|