1
|
Kushnazarova RA, Mirgorodskaya AB, Vasilieva EA, Lenina OA, Petrov KA, Zakharova LY. New piperidinium surfactants with carbamate fragments as effective adjuvants in insecticide compositions based on imidacloprid. PEST MANAGEMENT SCIENCE 2024; 80:5965-5973. [PMID: 39034816 DOI: 10.1002/ps.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Surfactants, particularly non-ionic ones, are widely used as adjuvants in pesticide formulations due to their ability to maintain pesticide effectiveness without changing solution properties, such as pH. While non-ionic surfactants are generally low-toxic, stable, and excellent dispersants with high solubilization capabilities, they may be less effective than cationic surfactants, which offer superior surface activity, transport properties, and antimicrobial action. This study investigates the efficacy of new piperidinium surfactants with carbamate fragments as adjuvants in insecticide formulations containing imidacloprid. The efficacy of these formulations is being assessed against greenhouse whitefly, a pest known to harm cultivated and ornamental flowering plants. RESULTS The aggregation behavior of piperidinium surfactants containing carbamate fragments was investigated, and their wetting effect was evaluated. Synthesized surfactants have lower CMC values compared to their methylpiperidinium analogue. The effect of piperidinium surfactants on the insecticide concentration on the surface and inside tomato leaves was assessed using spectrophotometric methods. It was found that the introduction of piperidinium surfactants with carbamate fragment at a concentration of 0.1% wt. allows for decrease in lethal concentration of imidacloprid up to 10 times, thereby testifying the marked increase in the effectiveness of imidacloprid against the greenhouse whitefly insect pest (Trialeurodes vaporariorum). It was shown that the main factors responsible for the enhanced efficacy of the insecticide were the ability of the surfactant to increase the concentration of imidacloprid on the leaf surfaces and improve their penetration into the plant. CONCLUSION The presented work employed a comprehensive approach, which significantly increases the generalizability of the results obtained and provides the ability to predict the effect and target selection of adjuvants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rushana A Kushnazarova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Elmira A Vasilieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| |
Collapse
|
2
|
Homa J, Wilms W, Marcinkowska K, Cyplik P, Ławniczak Ł, Woźniak-Karczewska M, Niemczak M, Chrzanowski Ł. Comparative analysis of bacterial populations in sulfonylurea-sensitive and -resistant weeds: insights into community composition and catabolic gene dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52391-52409. [PMID: 39150664 PMCID: PMC11374828 DOI: 10.1007/s11356-024-34593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to compare the impact of iodosulfuron-methyl-sodium and an iodosulfuron-based herbicidal ionic liquid (HIL) on the microbiomes constituting the epiphytes and endophytes of cornflower (Centaurea cyanus L.). The experiment involved biotypes of cornflower susceptible and resistant to acetolactate synthase inhibition, examining potential bacterial involvement in sulfonylurea herbicide detoxification. We focused on microbial communities present on the surface and in the plant tissues of roots and shoots. The research included the synthesis and physicochemical analysis of a novel HIL, evaluation of shifts in bacterial community composition, analysis of the presence of catabolic genes associated with sulfonylurea herbicide degradation and determination of their abundance in all experimental variants. Overall, for the susceptible biotype, the biodiversity of the root microbiome was higher compared to shoot microbiome; however, both decreased notably after herbicide or HIL applications. The herbicide-resistant biotype showed lower degree of biodiversity changes, but shifts in community composition occurred, particularly in case of HIL treatment.
Collapse
Affiliation(s)
- Jan Homa
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland.
| | - Wiktoria Wilms
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Katarzyna Marcinkowska
- Department of Weed Science, Institute of Plant Protection - National Research Institute, 60-318, Poznan, Poland
| | - Paweł Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, 60-624, Poznan, Poland
| | - Łukasz Ławniczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| | - Łukasz Chrzanowski
- Department of Chemical Technology, Poznan University of Technology, 60-965, Poznan, Poland
| |
Collapse
|
3
|
Homa J, Konończuk K, Frankowski R, Zgoła-Grześkowiak A, Ławniczak Ł, Chrzanowski Ł, Stachowiak W, Niemczak M. Cations impact the biodegradation of iodosulfuron-methyl herbicidal ionic liquids by fungi. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 38849972 DOI: 10.1080/09593330.2024.2357696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/12/2024] [Indexed: 06/09/2024]
Abstract
In the framework of this study, six fungal isolates which demonstrated a high capability for biodegrading iodosulphuron-methyl sodium as well as herbicidal ionic liquids based on this herbicide were isolated from different soil samples. The isolates were identified based on the ITS region, whereas biodegradation residues were determined based on LC-MS/MS. Depending on the isolate, the half-lives values of the biodegraded herbicide or herbicidal ionic liquid ranged significantly from just 1.25 days to more than 40 days. The research findings unveiled that the structure of cations is a central limiting factor affecting fungal growth and herbicide transformation in case of ionic liquids. The length of the alkyl chain has been identified as the primary driver of herbicide toxicity, emphasizing the importance of structural factors in herbicide design. In cases when dodecyl(2-hydroxyethyl)dimethyl cation was used, its biodegradation ranged from 0 to approx. 20% and the biodegradability of the iodosulfuron-methyl was notably limited for the majority of the studied isolates. This knowledge provides guidance for development and selection of herbicides with reduced environmental impact. This study highlights the ecological importance of soil fungi, their potential role in herbicide biodegradation, the influence of cations on fungal growth and herbicide transformation, and the structural factors governing herbicide toxicity. Further research in these areas may lead to more efficient and environmentally friendly approaches to herbicide management.
Collapse
Affiliation(s)
- Jan Homa
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| | - Kosma Konończuk
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Poznań, Poland
| | | | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| | - Witold Stachowiak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Poznań, Poland
| |
Collapse
|
4
|
Homa J, Stachowiak W, Olejniczak A, Chrzanowski Ł, Niemczak M. Ecotoxicity studies reveal that organic cations in dicamba-derived ionic liquids can pose a greater environmental risk than the herbicide itself. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171062. [PMID: 38401717 DOI: 10.1016/j.scitotenv.2024.171062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.
Collapse
Affiliation(s)
- Jan Homa
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Adriana Olejniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| |
Collapse
|
5
|
Niemczak M, Stachowiak W, Kaczmarek DK, Grzanka M, Sobiech Ł. A comprehensive study demonstrating the influence of the solvent composition on the phytotoxicity of compounds, as exemplified by 2,4-D-based ILs with a choline-type cation. PEST MANAGEMENT SCIENCE 2023; 79:3602-3610. [PMID: 37183344 DOI: 10.1002/ps.7543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Growing concern for the protection of the environment and existing ecosystems has resulted in increasing consideration of phytotoxicity tests as valid ecotoxicological indicators of the potential hazards of the use of ionic liquids (ILs) or any other chemical. The objective of this study was to gain a detailed understanding of the influence of the solvent composition of spray solutions on the phytotoxic effect of foliar application of ionic pairs with weak (choline 2,4-dichlorophenoxyacetate, [Chol][2,4-D]), medium (N-hexylcholine 2,4-dichlorophenoxyacetate, [C6 Chol][2,4-D]) and good (N-dodecylcholine 2,4-dichlorophenoxyacetate, [C12 Chol][2,4-D]) surface-active properties. RESULTS Experimental results unambiguously demonstrated that the biological activity of the test salt solutions, particularly [Chol][2,4-D] and [C6 Chol][2,4-D], can be strongly affected by the addition of an organic solvent, such as methanol, ethanol, dimethylformamide (DMF) or dimethylsulfoxide (DMSO) compared to solutions in pure water. However, the observed tendency is less pronounced for the compound exhibiting good surface activity, [C12 Chol][2,4-D]. CONCLUSIONS The collected findings show that caution is warranted in the exploitation or modification of methodologies for assessing phytotoxicity to ensure the reliable interpretation of obtained results for environmental risk assessment or building quantitative structure-activity relationship (QSAR) models. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | | | - Monika Grzanka
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Sobiech
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
6
|
Wilms W, Parus A, Homa J, Batycka M, Niemczak M, Woźniak-Karczewska M, Trzebny A, Dabert M, Táncsics A, Cajthaml T, Heipieper HJ, Chrzanowski Ł. Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation. CHEMOSPHERE 2023; 316:137717. [PMID: 36610512 DOI: 10.1016/j.chemosphere.2022.137717] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15-53%; however, in the case of cations (except non-toxic choline), only 13-20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microorganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, obtained results indicate that corresponding ions in HILs might act as separate moieties in the environment.
Collapse
Affiliation(s)
- Wiktoria Wilms
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Anna Parus
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland.
| | - Jan Homa
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Milena Batycka
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| | | | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
| | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllő, Hungary
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
7
|
Stachowiak W, Smolibowski M, Kaczmarek DK, Rzemieniecki T, Niemczak M. Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157181. [PMID: 35817095 DOI: 10.1016/j.scitotenv.2022.157181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, two homologous series of esterquats comprising alkyl (from ethyl to octadecyl) betainate cations and bromide as well as dicamba anions were successfully synthesized, starting from a renewable raw material - glycine betaine. Due to the favorable octanol-water partition coefficient and utilization of biodegradable cations of natural origin, synthesized esterquats can be considered promising alternatives to currently applied dicamba-based formulations. In addition, the obtained results allowed us to verify whether the organic cations in quaternary ammonium salts containing herbicidally active anions (such as dicamba) play the role of biologically inactive adjuvants that only enhance the efficiency of the active ingredient or if they simultaneously exhibit a significant degree of phytotoxicity. Analysis of the influence of alkyl betainate esterquats containing nonherbicidal (bromide) anions on seedlings of white mustard revealed that alkyl betainate cations promote the germination of white mustard seeds; however, the subsequent growth of the seedlings was significantly inhibited. Further studies performed on white mustard and cornflower plants in a stage of 4-6 leaves allowed us to conclude that in the case of sensitive plants, the high phytotoxicity can be attributed to the presence of the dicamba anion, whereas for more resistant plants the additional influence of the cation on the phytotoxic effect is visible. Esterquats comprising a dodecyl substituent or longer had high surface active properties. Nonetheless, their contact angle values were not correlated with phytotoxicity data, indicating an additional influence of the cation on this stage of plant development. Interestingly, subsequent dose-response experiments conducted for two selected dicamba-based products confirmed that the greatest phytotoxicity was expressed by compounds containing a decyl substituent.
Collapse
Affiliation(s)
- Witold Stachowiak
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Mikołaj Smolibowski
- Faculty of Computing and Telecommunications, Poznan University of Technology, Poznan 60-965, Poland
| | | | - Tomasz Rzemieniecki
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
| | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland.
| |
Collapse
|
8
|
Pernak J, Niemczak M, Rzemieniecki T, Marcinkowska K, Praczyk T. Dicationic Herbicidal Ionic Liquids Comprising Two Active Ingredients Exhibiting Different Modes of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2545-2553. [PMID: 35170944 PMCID: PMC8895401 DOI: 10.1021/acs.jafc.1c07750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the framework of this study, dicationic herbicidal ionic liquids (HILs) containing tetramethylene-1,4-bis(decyldimethylammonium) and dodecylmethylene-1,12-bis(decyldimethylammonium), including two different herbicidal anions exhibiting different modes of action, were synthesized and characterized. One herbicide incorporated into the HILs was a tribenuron-methyl belonging to ALS inhibitors, while the second herbicidal anion was a synthetic auxin that acts as a growth regulator, namely 2,4-dichlorophenoxyacetate (2,4-D), 2-(2,4-dichlorophenoxy)propionate, (2,4-DP), 2,4,5-trichlorophenoxyacetate (2,4,5-T), 4-chloro-2-methylphenoxyacetiate (MCPA), 2-(4-chloro-2-methylphenoxy)propionate (MCPP), and 4-chlorophenoxyacetate (4-CPA). The obtained products were found to be unstable and decomposed, which can be attributed to the presence of an additional methyl group within the sulfonylurea bridge of the tribenuron-methyl. The synthesized HILs exhibited good affinity with polar and semipolar solvents, with ethyl acetate and hexane as the only solvents that did not dissolve the HILs. Greenhouse tests demonstrated that most of the obtained HILs were more effective than the reference herbicide containing tribenuron-methyl. The length of the alkyl chain in the cation also influenced the effectiveness of the HILs. Better effects were observed for dodecylmethylene-1,12-bis(decyldimethylammonium) cations compared to tetramethylene-1,4-bis(decyldimethylammonium). Therefore, the novel dicatonic HILs showed to integrate the advent of the combination of the different herbicides into a single molecule, enhance herbicidal efficacy, and reduce the risk of weed resistance due to the various modes of action of the applied treatment.
Collapse
Affiliation(s)
- Juliusz Pernak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
- . Tel: 00148-61-6653682
| | - Michał Niemczak
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | - Tomasz Rzemieniecki
- Department
of Chemical Technology, Poznan University
of Technology, Poznan 60-965, Poland
| | | | - Tadeusz Praczyk
- Institute
of Plant Protection - National Research Institute, Poznan 60-318, Poland
| |
Collapse
|