1
|
González-Nava J, Salinas-Virgen LI, Sandoval-Trujillo H, de la Torre-Hernández ME, Ramírez-Saad H. Complete genome of the opportunistic pathogen Nocardia vulneris strain LPB4002 and its biosynthetic potential. Microbiol Resour Announc 2024; 13:e0084024. [PMID: 39470236 PMCID: PMC11636320 DOI: 10.1128/mra.00840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
The complete genome sequence of the opportunistic pathogen Nocardia vulneris is reported. The strain N. vulneris LPB4002 was isolated from a clinical sample of a patient with actinomycetoma. The reported genome comprises a single 9,489-Kb closed chromosome, with 8,584 protein-coding genes and 68% GC content.
Collapse
Affiliation(s)
| | | | - Horacio Sandoval-Trujillo
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Ma. Eugenia de la Torre-Hernández
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Investigadores por México, CONAHCYT - UAM-Xochimilco, Mexico City, Mexico
| | - Hugo Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
2
|
Fei P, Yangjun L, Yuee Z, Ping L, Chengzhi L, Linlin C, Hong J, Yunyang L, Wenzhou Z, Youxia H. The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin. Mar Genomics 2024; 78:101146. [PMID: 39515969 DOI: 10.1016/j.margen.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
Collapse
Affiliation(s)
- Peng Fei
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| | - Lin Yangjun
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Zhuang Yuee
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Lin Ping
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Liu Chengzhi
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Chen Linlin
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China
| | - Jiang Hong
- Fujian key laboratory of Screening for Novel Microbial Products, Fujian Instutite of Microbiology, Fuzhou 350007, People's Republic of China
| | - Lian Yunyang
- Fujian key laboratory of Screening for Novel Microbial Products, Fujian Instutite of Microbiology, Fuzhou 350007, People's Republic of China
| | - Zhang Wenzhou
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| | - Huang Youxia
- Quanzhou Medical College, Quanzhou 362000, People's Republic of China.
| |
Collapse
|
3
|
Giordano ALPL, Rodrigues MVN, Dos Santos KGA, Legabão BC, Pontes L, de Angelis DA, Garboggini FF, Schreiber AZ. Enhancing Antifungal Drug Discovery Through Co-Culture with Antarctic Streptomyces albidoflavus Strain CBMAI 1855. Int J Mol Sci 2024; 25:12744. [PMID: 39684453 DOI: 10.3390/ijms252312744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Fungal infections pose a growing public health threat, creating an urgent clinical need for new antifungals. Natural products (NPs) from organisms in extreme environments are a promising source for novel drugs. Streptomyces albidoflavus CBMAI 1855 exhibited significant potential in this regard. This study aimed to (1) assess the antifungal spectrum of the CBMAI 1855 extract against key human pathogens, (2) elicit NP production through co-cultivation with fungi, correlating the metabolites with the biosynthetic gene clusters (BGCs), and (3) perform in silico toxicity predictions of the identified compounds to analyze their suitability for drug development. The crude extract of CBMAI 1855 exhibited broad-spectrum antifungal activity. The metabolomic analysis identified antifungal NPs such as antimycin A, fungimycin, surugamides, 9-(4-aminophenyl)-3,7-dihydroxy-2,4,6-trimethyl-9-oxo-nonoic acid, and ikarugamycin, with the latter two predicted to be the most suitable for drug development. Genome mining revealed three cryptic BGCs potentially encoding novel antifungals. These BGCs warrant a detailed investigation to elucidate their metabolic products and harness their potential. CBMAI 1855 is a prolific producer of multiple antifungal agents, offering a valuable source for drug discovery. This study highlights the importance of exploring microbial interactions to uncover therapeutics against fungal infections, with a detailed exploration of cryptic BGCs offering a pathway to novel antifungal compounds.
Collapse
Affiliation(s)
| | - Marili Villa Nova Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Paulínia 13083-970, SP, Brazil
| | | | - Barbara Cipulo Legabão
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Lais Pontes
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Derlene Attili de Angelis
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Paulínia 13083-970, SP, Brazil
| | - Fabiana Fantinatti Garboggini
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Paulínia 13083-970, SP, Brazil
| | | |
Collapse
|
4
|
Kever L, Zhang Q, Hardy A, Westhoff P, Yu Y, Frunzke J. Resistance against aminoglycoside antibiotics via drug or target modification enables community-wide antiphage defense. MICROLIFE 2024; 5:uqae015. [PMID: 39205678 PMCID: PMC11350373 DOI: 10.1093/femsml/uqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by Streptomyces. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant Streptomyces venezuelae with the apramycin-producing strain Streptoalloteichus tenebrarius. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.
Collapse
Affiliation(s)
- Larissa Kever
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Qian Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Aël Hardy
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Julia Frunzke
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
5
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01184-x. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
6
|
El-Sayed MH, Gomaa AERF, Atta OM, Hassane AMA. Characteristics and kinetics of thermophilic actinomycetes' amylase production on agro-wastes and its application for ethanol fermentation. World J Microbiol Biotechnol 2024; 40:255. [PMID: 38926189 DOI: 10.1007/s11274-024-04009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Abstract
Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.
Collapse
Affiliation(s)
- Mohamed H El-Sayed
- Department of Biology, College of Science and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abd El-Rahman F Gomaa
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
7
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
8
|
Sun S, Xu Z, Ren M, Li S, Xie Z, Luo Y, Tian Y. Identification of microbial diversity in buried ivory soil at the Sanxingdui site in Guanghan City, China, using high-throughput sequencing. Front Microbiol 2024; 15:1384650. [PMID: 38873157 PMCID: PMC11169624 DOI: 10.3389/fmicb.2024.1384650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction The Sanxingdui Site in Guanghan City, Sichuan Province, China, is one of the precious heritage sites of the ancient Chinese civilization. Archaeological work at Sanxingdui is of great significance in clarifying the origins and main contents of the ancient Shu culture and the Yangtze River civilization. Since the 1920s, archaeologists have conducted extensive excavations and research at the site, with particular attention given to the large number of ivory artifacts unearthed. However, the buried ivory is influenced by soil pH, temperature, humidity, and other physical and chemical factors, along with the potential impact of microbial activities that may lead to the corrosion and decomposition of ivory. By understanding the types and activities of microorganisms, appropriate measures can be taken to protect and preserve cultural relics. Methods Multi-point sampling of soil samples around the ivory of the three sacrificial pits at the Sanxingdui site was carried out, and strict aseptic operation was carried out during the sampling process. Subsequently, the microbial community structure and diversity in the buried ivory soil of Sanxingdui site were identified and analyzed by Illumina high-throughput sequencing technology. Results 16S rRNA and internal transcribed spacer sequence analysis revealed significant differences in the soil microbial community structure among different sacrificial pits. The dominant bacterial phyla were the Proteobacteria, GAL15, Actinobacteriota, Bacteroidota, and Methylomirabilota. The dominant fungal phyla were Ascomycota, Mortierellomhcota, and Basidiomycota. Most dominant bacterial and fungal communities play an indispensable role in the ivory corrosion mechanism, promoting the decay and decomposition process through various means such as decomposing organic matter and producing acidic substances. Discussion It is particularly important to take a series of measures to control microbial activity to effectively protect ivory. Our preliminary study of the mechanism of action of microorganisms on ivory in a buried environment provides a scientific basis to prevent and protect against microbial degradation in ancient ivory unearthed in Sanxingdui. Following the research results, suitable antibacterial agents tailored to the preservation environment and microbial characteristics of ancient ivory can be prepared. Ensure that the selected antibacterial agents meet safety and effectiveness requirements to maximize protection against microbial degradation of ancient ivory.
Collapse
Affiliation(s)
- Siyu Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Mengjia Ren
- School of History and Culture, National Center for Experimental Archaeology Education, Sichuan University, Chengdu, China
| | - Sifan Li
- Sichuan Provincial Cultural Relics and Archaeology Research, Chengdu, China
| | - Zhenbin Xie
- Sichuan Provincial Cultural Relics and Archaeology Research, Chengdu, China
| | - Yanbing Luo
- School of History and Culture, National Center for Experimental Archaeology Education, Sichuan University, Chengdu, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Driche EH, Badji B, Bijani C, Belghit S, Pont F, Mathieu F, Zitouni A. Antibacterial and antibiofilm properties of two cyclic dipeptides produced by a new desert Streptomyces sp. HG-17 strain against multidrug-resistant pathogenic bacteria. Int Microbiol 2024:10.1007/s10123-024-00533-7. [PMID: 38777925 DOI: 10.1007/s10123-024-00533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The emergence of multidrug-resistant bacteria and biofilms requires discovering new antimicrobial agents from unexplored environments. OBJECTIVES This study aims to isolate and characterize a new actinobacterial strain from the Hoggar Mountains in southern Algeria and evaluate its ability to produce bioactive molecules with potential antibacterial and antibiofilm activities. METHODS A novel halotolerant actinobacterial strain, designated HG-17, was isolated from the Hoggar Mountains, and identified based on phenotypic characterizations, 16S rDNA sequence analysis, and phylogenetic analysis. The antibacterial and antibiofilm activities of the strain were assessed, and the presence of biosynthetic genes (PKS-I and NRPS) was confirmed. Two active compounds, HG-7 and HG-9, were extracted butanol solvent, purified by HPLC, and their chemical structures were elucidated using ESI mass spectrometry and NMR spectroscopy. RESULTS The strain HG-17 was identified as Streptomyces purpureus NBRC with 98.8% similarity. It exhibited strong activity against multidrug-resistant and biofilm-forming bacteria. The two purified active compounds, HG-7 and HG-9, were identified as cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine), respectively. The minimum inhibitory concentrations (MICs) of HG-7 and HG-9 ranged from 3 to 15 μg/mL, comparable to the MICs of tetracycline (8 to 15 μg/mL). Their minimum biofilm inhibitory concentration (MBIC 50%) showed good inhibition from 48.0 to 52.0% at concentrations of 1 to 7 μg/mL against the tested bacteria. CONCLUSION This is the first report of cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine) antibiotics from S. purpureus and their anti-multi-drug-resistant and biofilm-forming bacteria. These results indicate that both antibiotics could be used as effective therapeutics to control infections associated with multidrug-resistant bacteria.
Collapse
Affiliation(s)
- El-Hadj Driche
- Laboratory of Molecular Biology, Genomics and Bioinformatics (LBMGB), Faculty of Natural and Life Sciences (SNV), Hassiba Benbouali University of Chlef, Hay Salem, 02000, Chlef, Algeria.
- Laboratory of Biology of Microbial Systems (LBMS), Higher Normal School of Kouba, B.P. 92, 16050 Kouba, Alger, Algeria.
| | - Boubekeur Badji
- Laboratory of Biology of Microbial Systems (LBMS), Higher Normal School of Kouba, B.P. 92, 16050 Kouba, Alger, Algeria
| | - Christian Bijani
- Laboratory of Chemistry Coordination (LCC), CNRS, University of Toulouse, UPS, INPT, LCC, 205, Road to Narbonne, 31077, Toulouse, France
| | - Saïd Belghit
- Laboratory of the Valorization and Conservation of Arid Ecosystems (LVCAE), Faculty of Natural, Life and Earth Sciences, University of Ghardaia, BP 455, 47000, Ghardaia, Algeria
| | - Frédéric Pont
- Proteomics Group, INSERM UMR1037, Cancer Research Center (CRCT) of Toulouse, Toulouse, France
| | - Florence Mathieu
- Chemical Engineering Laboratory, LGC, UMR 5503 (CNRS/INPT/UPS), University of Toulouse, Toulouse, France
| | - Abdelghani Zitouni
- Laboratory of Biology of Microbial Systems (LBMS), Higher Normal School of Kouba, B.P. 92, 16050 Kouba, Alger, Algeria
| |
Collapse
|
10
|
Hezbri K, Kammoun I, Sbissi I, Klenk HP, Montero-Calasanz MDC, Ghodhbane-Gtari F, Gtari M. Blastococcus brunescens sp. nov., a member of the Geodermatophilaceae isolated from sandstone collected from the Sahara Desert in Tunisia. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568050 DOI: 10.1099/ijsem.0.006317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The taxonomic position of strain BMG 8361T, isolated from sandstone collected in the Sahara Desert of Southern Tunisia, was refined through a polyphasic taxonomic investigation. Colonies of BMG 8361T were pale-orange coloured, irregular with a dry surface and produced a diffusible pink or brown pigment depending on media. The Gram-positive cells were catalase-positive and oxidase-negative. The strain exhibited growth at 10-40 °C and pH values ranging from 5.5 to 9.0, with optima at 28-35 °C and pH 6.5-8.0. Additionally, BMG 8361T demonstrated the ability to grow in the presence of up to 1 % NaCl (w/v) concentration. The peptidoglycan of the cell wall contained meso-diaminopimelic acid, glucose, galactose, xylose, ribose, and rhamnose. The predominant menaquinones consisted of MK-9(H4) and MK-9. The main polar lipids were phosphatidylcholine, phosphatidylinositol, glycophosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified lipids. Major cellular fatty acids were iso-C16 : 0, iso-C16 : 1 h, and C17 : 1 ω8c. Phylogenetic analyses based on both the 16S rRNA gene and whole-genome sequences assigned strain BMG 8361T within the genus Blastococcus. The highest pairwise sequence similarity observed in the 16S rRNA gene was 99.5 % with Blastococcus haudaquaticus AT 7-14T. However, when considering digital DNA-DNA hybridization and average nucleotide identity, the highest values, 48.4 and 86.58 %, respectively, were obtained with Blastococcus colisei BMG 822T. These values significantly undershoot the recommended thresholds for establishing new species, corroborating the robust support for the distinctive taxonomic status of strain BMG 8361T within the genus Blastococcus. In conjunction with the phenotyping results, this compelling evidence leads to the proposal of a novel species we named Blastococcus brunescens sp. nov. with BMG 8361T (=DSM 46845T=CECT 8880T) as the type strain.
Collapse
Affiliation(s)
- Karima Hezbri
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| | - Ikram Kammoun
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| | - Imed Sbissi
- Arid Regions Institute, LR Pastoral Ecology, Medenine, Tunisia
| | - Hans-Peter Klenk
- Newcastle University, School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| | | | - Faten Ghodhbane-Gtari
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
- University of La Manouba, Higher Institute of Biotechnology of Sidi-Thabet, Manouba, Tunisia
| | - Maher Gtari
- University of Carthage, National Institute of Applied Sciences and Technology, USCR Molecular Bacteriology and Genomics, Carthage, Tunisia
| |
Collapse
|
11
|
El-Sayed MH, Elsayed DA, Gomaa AERF. Nocardiopsis synnemataformans NBRM9, an extremophilic actinomycete producing extremozyme cellulase, using lignocellulosic agro-wastes and its biotechnological applications. AIMS Microbiol 2024; 10:187-219. [PMID: 38525045 PMCID: PMC10955166 DOI: 10.3934/microbiol.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Actinomycetes are an attractive source of lignocellulose-degrading enzymes. The search for actinomycetes producing extremozyme cellulase using cheap lignocellulosic waste remains a priority goal of enzyme research. In this context, the extremophilic actinomycete NBRM9 showed promising cellulolytic activity in solid and liquid assays. This actinomycete was identified as Nocardiopsis synnemataformans based on its phenotypic characteristics alongside phylogenetic analyses of 16S rRNA gene sequencing (OQ380604.1). Using bean straw as the best agro-waste, the production of cellulase from this strain was statistically optimized using a response surface methodology, with the maximum activity (13.20 U/mL) achieved at an incubation temperature of 40 °C, a pH of 9, an incubation time of 7 days, and a 2% substrate concentration. The partially purified cellulase (PPC) showed promising activity and stability over a wide range of temperatures (20-90 °C), pH values (3-11), and NaCl concentrations (1-19%), with optimal activity at 50 °C, pH 9.0, and 10% salinity. Under these conditions, the enzyme retained >95% of its activity, thus indicating its extremozyme nature. The kinetics of cellulase showed that it has a Vmax of 20.19 ± 1.88 U/mL and a Km of 0.25 ± 0.07 mM. The immobilized PPC had a relative activity of 69.58 ± 0.13%. In the in vitro microtiter assay, the PPC was found to have a concentration-dependent anti-biofilm activity (up to 85.15 ± 1.60%). Additionally, the fermentative conversion of the hydrolyzed bean straw by Saccharomyces cerevisiae (KM504287.1) amounted to 65.80 ± 0.52% of the theoretical ethanol yield. Overall, for the first time, the present work reports the production of extremozymatic (thermo, alkali-, and halo-stable) cellulase from N. synnemataformans NBRM9. Therefore, this strain is recommended for use as a biotool in many lignocellulosic-based applications operating under harsh conditions.
Collapse
Affiliation(s)
- Mohamed H. El-Sayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Doaa A. Elsayed
- Department of Biology, College of Science and Arts, Northern Border University, Arar, Saudi Arabia
| | - Abd El-Rahman F. Gomaa
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| |
Collapse
|
12
|
Uesugi JHE, Dos Santos Caldas D, Coelho BBF, Prazes MCC, Omura LYE, Pismel JAR, Bezerra NV. Morphological diversity of actinobacteria isolated from oil palm compost (Elaeis guineensis). Braz J Microbiol 2024; 55:455-469. [PMID: 38010583 PMCID: PMC10920546 DOI: 10.1007/s42770-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Composting is a natural process of decomposition of organic matter that occurs by the action of microorganisms such as fungi, bacteria, and actinobacteria. The actinobacteria are present throughout the process due to their resistance to different environmental conditions. They are Gram-positive, filamentous bacteria with a high capacity for producing secondary metabolites of biotechnological importance. Thus, the objective of this work was to isolate and characterize actinobacteria from industrial composting soil of oil palm (Elaeis guineensis) in the municipality of Igarapé-Açu, Pará. Ten samples of the material were collected and seeded on soy tryptone agar, Reasoner's 2A agar, and Columbia agar, using the serial dilution technique. For morphological characterization of the strains, Gram staining and microculture were performed, and for biochemical characterization, the motility, triple sugar iron, Simmons citrate, maltose, phenylalanine, catalase, and DNAse tests were performed. It was observed that compost actinobacteria have a great diversity in morphological and metabolic production, which may be associated with the substrate and cultivation conditions. Therefore, palm oil compost material represents a rich source of bacterial biodiversity, bringing new perspectives for the bioprospecting of actinobacteria of biotechnological importance in little explored environments.
Collapse
Affiliation(s)
- Juliana Hiromi Emin Uesugi
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Daniel Dos Santos Caldas
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil.
| | - Brunna Beatrys Farias Coelho
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Maria Clara Coelho Prazes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Lucas Yukio Emin Omura
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - José Alyson Rocha Pismel
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Pará State University, Tv. Perebebuí, 2623, Marco, Belém, PA, Brazil
| |
Collapse
|
13
|
Sivakumar A, Suresh V, Sethuraman S, Sivaperumal P. Biosynthesis of Zinc Nanoparticles From Actinobacterium Streptomyces Species and Their Biological Potential. Cureus 2024; 16:e54124. [PMID: 38487111 PMCID: PMC10938190 DOI: 10.7759/cureus.54124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In today's world, antibiotic-resistant microorganisms are a major concern. There is solid evidence that metal nanoparticles (NPs) tend to have antimicrobial properties. The most effective substitute for antibiotic resistance is the incorporation of metal NPs. The antibacterial properties of NPs are currently being explored and shown to be successful. Zinc (Zn) NPs that are biosynthesized from marine Actinobacterium proved to be more biocompatible, bioactive, and affordable. Aim: This study aims to investigate the synthesis of ZnNPs from Actinobacterium Streptomyces species and their antimicrobial effects against gram-positive and gram-negative bacteria. MATERIALS AND METHODS The current study uses natural, considerably safer processes to synthesize ZnNPs from marine Actinobacteria with little to no negative side effects. It involves sample collection, identification, and isolation of Actinobacterium Streptomyces species. The isolated sample was air-dried, and extracts of ZnNPs were taken. Among the isolates from marine sediment, two Actinobacteria that generate bioactive secondary metabolites-Streptomyces species (MOSEL-ME28) and Rhodococcus rhodochrous (MOSEL-ME29)-were selected for extracellular synthesis of ZnNPs. The antimicrobial activity of the biosynthesized ZnNPs from marine Actinobacteria was analyzed against Staphylococcus (MRSA), Klebsiella pneumoniae, and Streptococcus mutans. The results were statistically analyzed and graphs were created. RESULTS ZnNPs obtained from Actinobacterium Streptomyces species exhibited antimicrobial effects against Staphylococcus (MRSA), Klebsiella, and Streptococcus mutans. At 280 nm wavelength, analysis of the UV spectrum showed a notable absorbance value of 1.8. The antibacterial efficacy against Staphylococcus MRSA, Klebsiella species, and Streptococcus mutans was assessed by measuring the zone of inhibition in diameter. The zones of inhibition were 8, 8, and 7 mm on the evaluation for Streptococcus mutans, S. aureus, and Klebsiella species, respectively, at a dose of 75 μg/mL. When the dosage was increased to 100 μg/mL, the inhibition zones were found to be 9.5, 9, and 7.5 mm for the respective bacterial strains. CONCLUSION ZnNPs are biosynthesized from marine Actinobacterium Streptomyces species in this research study. They have a significant antimicrobial activity against both gram-positive and negative bacteria. This indicates that ZnNPs have enormous antimicrobial potential and have an extensive spectrum of applications. However, clinical trials must be completed before it can be used safely on patients.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathya Sethuraman
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pitchiah Sivaperumal
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
14
|
Mao J, Zhang M, Dai W, Fu C, Wang Z, Wang X, Yao Q, Kong L, Qin J. Metabolic perturbation of Streptomyces albulus by introducing NADP-dependent glyceraldehyde 3-phosphate dehydrogenase. Front Microbiol 2024; 15:1328321. [PMID: 38328422 PMCID: PMC10847347 DOI: 10.3389/fmicb.2024.1328321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
The available resources of Streptomyces represent a valuable repository of bioactive natural products that warrant exploration. Streptomyces albulus is primarily utilized in the industrial synthesis of ε-poly-L-lysine (ε-PL). In this study, the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans was heterologously expressed in S. albulus CICC11022, leading to elevated intracellular NADPH levels and reduced NADH and ATP concentrations. The resulting perturbation of S. albulus metabolism was comprehensively analyzed using transcriptomic and metabolomic methodologies. A decrease in production of ε-PL was observed. The expression of gapN significantly impacted on 23 gene clusters responsible for the biosynthesis of secondary metabolites. A comprehensive analysis revealed a total of 21 metabolites exhibiting elevated levels both intracellularly and extracellularly in the gapN expressing strain compared to those in the control strain. These findings underscore the potential of S. albulus to generate diverse bioactive natural products, thus offering valuable insights for the utilization of known Streptomyces resources through genetic manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linghui Kong
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayang Qin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
15
|
Rathinam AJ, Santhaseelan H, Dahms HU, Dinakaran VT, Murugaiah SG. Bioprospecting of unexplored halophilic actinobacteria against human infectious pathogens. 3 Biotech 2023; 13:398. [PMID: 37974926 PMCID: PMC10645811 DOI: 10.1007/s13205-023-03812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023] Open
Abstract
Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.
Collapse
Affiliation(s)
- Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024 India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | | | | |
Collapse
|
16
|
Chin EJ, Ching KC, Tan ZY, Wibowo M, Leong CY, Yang LK, Ng VWP, Seow DCS, Kanagasundaram Y, Ng SB. Natural Products from Singapore Soil-Derived Streptomycetaceae Family and Evaluation of Their Biological Activities. Molecules 2023; 28:5832. [PMID: 37570802 PMCID: PMC10421265 DOI: 10.3390/molecules28155832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Natural products have long been used as a source of antimicrobial agents against various microorganisms. Actinobacteria are a group of bacteria best known to produce a wide variety of bioactive secondary metabolites, including many antimicrobial agents. In this study, four actinobacterial strains found in Singapore terrestrial soil were investigated as potential sources of new antimicrobial compounds. Large-scale cultivation, chemical, and biological investigation led to the isolation of a previously undescribed tetronomycin A (1) that demonstrated inhibitory activities against both Gram-positive bacteria Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) (i.e., MIC90 of 2-4 μM and MBC90 of 9-12 μM), and several known antimicrobial compounds, namely nonactin, monactin, dinactin, 4E-deacetylchromomycin A3, chromomycin A2, soyasaponin II, lysolipin I, tetronomycin, and naphthomevalin. Tetronomycin showed a two- to six-fold increase in antibacterial activity (i.e., MIC90 and MBC90 of 1-2 μM) as compared to tetronomycin A (1), indicating the presence of an oxy-methyl group at the C-27 position is important for antibacterial activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.-J.C.); (K.-C.C.); (Z.Y.T.); (M.W.); (C.-Y.L.); (L.-K.Y.); (V.W.P.N.); (D.C.S.S.)
| | - Siew-Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.-J.C.); (K.-C.C.); (Z.Y.T.); (M.W.); (C.-Y.L.); (L.-K.Y.); (V.W.P.N.); (D.C.S.S.)
| |
Collapse
|
17
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
18
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
19
|
Michael, Waturangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol 2023; 23:83. [PMID: 36991312 PMCID: PMC10053847 DOI: 10.1186/s12866-023-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Biofilm-associated infections are a global threat to our economy and human health; as such, development of antibiofilm compounds is an urgent need. Our previous study identified eleven environmental isolates of endophyte bacteria, actinomycetes, and two strains of Vibrio cholerae as having strong antibiofilm activity, but only tested crude extracts from liquid culture. Here we grew the same bacteria in solid culture to induce the formation of colony biofilms and the expression of genes that may ultimately produce antibiofilm compounds. This research aimed to compare antibiofilm inhibition and destruction activities between liquid and solid cultures of these eleven environmental isolates against the biofilms of representative pathogenic bacteria.
Results
We measured antibiofilm activity using the static antibiofilm assay and crystal violet staining. The majority of our isolates exhibited higher inhibitory antibiofilm activity in liquid media, including all endophyte bacteria, V. cholerae V15a, and actinomycetes strains (CW01, SW03, CW17). However, for V. cholerae strain B32 and two actinomycetes bacteria (TB12 and SW12), the solid crude extracts showed higher inhibitory activity. Regarding destructive antibiofilm activity, many endophyte isolates and V. cholerae strains showed no significant difference between culture methods; the exceptions were endophyte bacteria isolate JerF4 and V. cholerae B32. The liquid extract of isolate JerF4 showed higher destructive activity relative to the corresponding solid culture extract, while for V. cholerae strain B32 the solid extract showed higher activity against some biofilms of pathogenic bacteria.
Conclusions
Culture conditions, namely solid or liquid culture, can influence the activity of culture extracts against biofilms of pathogenic bacteria. We compared the antibiofilm activity and presented the data that majority of isolates showed a higher antibiofilm activity in liquid culture. Interestingly, solid extracts from three isolates (B32, TB12, and SW12) have a better inhibition or/and destruction antibiofilm activity compared to their liquid culture. Further research is needed to characterize the activities of specific metabolites in solid and liquid culture extracts and to determine the mechanisms of their antibiofilm actions.
Collapse
|
20
|
Prioritization of Microorganisms Isolated from the Indian Ocean Sponge Scopalina hapalia Based on Metabolomic Diversity and Biological Activity for the Discovery of Natural Products. Microorganisms 2023; 11:microorganisms11030697. [PMID: 36985270 PMCID: PMC10057949 DOI: 10.3390/microorganisms11030697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Despite considerable advances in medicine and technology, humanity still faces many deadly diseases such as cancer and malaria. In order to find appropriate treatments, the discovery of new bioactive substances is essential. Therefore, research is now turning to less frequently explored habitats with exceptional biodiversity such as the marine environment. Many studies have demonstrated the therapeutic potential of bioactive compounds from marine macro- and microorganisms. In this study, nine microbial strains isolated from an Indian Ocean sponge, Scopalina hapalia, were screened for their chemical potential. The isolates belong to different phyla, some of which are already known for their production of secondary metabolites, such as the actinobacteria. This article aims at describing the selection method used to identify the most promising microorganisms in the field of active metabolites production. The method is based on the combination of their biological and chemical screening, coupled with the use of bioinformatic tools. The dereplication of microbial extracts and the creation of a molecular network revealed the presence of known bioactive molecules such as staurosporin, erythromycin and chaetoglobosins. Molecular network exploration indicated the possible presence of novel compounds in clusters of interest. The biological activities targeted in the study were cytotoxicity against the HCT-116 and MDA-MB-231 cell lines and antiplasmodial activity against Plasmodium falciparum 3D7. Chaetomium globosum SH-123 and Salinispora arenicola SH-78 strains actually showed remarkable cytotoxic and antiplasmodial activities, while Micromonospora fluostatini SH-82 demonstrated promising antiplasmodial effects. The ranking of the microorganisms as a result of the different screening steps allowed the selection of a promising strain, Micromonospora fluostatini SH-82, as a premium candidate for the discovery of new drugs.
Collapse
|
21
|
Marzoug Amel N, Adel A, Fadila K, Ines G, Abdelhak G. Effect of Peganum harmala L. extract supplemented ISP2 medium on growth and production of secondary metabolites of Streptomyces ayarius S115. ELECTRON J BIOTECHN 2023. [DOI: 10.1016/j.ejbt.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
22
|
Zyoud SH, Shakhshir M, Koni A, Shahwan M, Jairoun AA, Al-Jabi SW. Olfactory and Gustatory Dysfunction in COVID-19: A Global Bibliometric and Visualized Analysis. Ann Otol Rhinol Laryngol 2023; 132:164-172. [PMID: 35240864 PMCID: PMC9834628 DOI: 10.1177/00034894221082735] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Coronavirus illness (COVID-19) has been found to alter infected people's sense of smell and taste. However, the pathobiology of this virus is not yet known. Therefore, it is critical to investigate the influence of COVID-19 infection on olfactory and gustatory processes. Therefore, we use bibliometric analysis on COVID-19 and olfactory and/or gustatory dysfunction publications to provide studies perspective. METHODS A bibliometric literature search was performed in the Scopus database. The number and type of publications, countries for publications, institutional sources for publications, journals for publications, citation patterns, and funding agencies were analyzed using Microsoft Excel or VOSviewer. In addition, the VOSviewer 1.6.17 software was used to analyze and visualize hotspots and collaboration patterns between countries. RESULTS Scopus has published 187 088 documents for COVID-19 in all study fields at the time of data collection (July 26, 2021). A total of 1740 documents related to olfactory and/or gustatory dysfunction were recovered. The countries most relevant by the number of publications were the United States (n = 362, 20.80%), Italy (n = 255, 14.66%), and the United Kingdom (n = 173, 9.94%). By analyzing the terms in the titles and abstracts, we identified 2 clusters related to olfactory and/or gustatory dysfunction research, which are "diagnosis and test methods" and "prognosis and complications of the disease." CONCLUSIONS This is the first bibliometric analysis of publications related to COVID-19 and olfactory and/or gustatory dysfunction. This study provides academics and researchers with useful information on the publishing patterns of the most influential publications on COVID-19 and olfactory and/or gustatory dysfunction. Olfactory and/or gustatory dysfunction as indices of suspicion for the empirical diagnosis of coronavirus infection is a new hotspot in this field.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- Poison Control and Drug Information
Center (PCDIC), College of Medicine and Health Sciences, An-Najah National
University, Nablus, Palestine
- Department of Clinical and Community
Pharmacy, College of Medicine and Health Sciences, An-Najah National University,
Nablus, Palestine
- Clinical Research Centre, An-Najah
National University Hospital, Nablus, Palestine
- Sa’ed H. Zyoud, PhD, Poison Control and
Drug Information Center (PCDIC), College of Medicine and Health Sciences,
An-Najah National University, Academic Street, Nablus 44839, Palestine.
| | - Muna Shakhshir
- Department of Nutrition, An-Najah
National University Hospital, Nablus, Palestine
| | - Amer Koni
- Department of Clinical and Community
Pharmacy, College of Medicine and Health Sciences, An-Najah National University,
Nablus, Palestine
- Division of Clinical Pharmacy,
Hematology and Oncology Pharmacy Department, An-Najah National University Hospital,
Nablus, Palestine
| | - Moyad Shahwan
- College of Pharmacy and Health
Sciences, Ajman University, United Arab Emirates
| | - Ammar A. Jairoun
- Health and Safety Department, Dubai
Municipality, Dubai, United Arab Emirates
| | - Samah W. Al-Jabi
- Department of Clinical and Community
Pharmacy, College of Medicine and Health Sciences, An-Najah National University,
Nablus, Palestine
| |
Collapse
|
23
|
Diversity and Antimicrobial Activities of Actinobacteria Isolated from Mining Soils in Midelt Region, Morocco. ScientificWorldJournal 2023; 2023:6106673. [PMID: 36733955 PMCID: PMC9889154 DOI: 10.1155/2023/6106673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant bacteria have emerged as a serious global health threat that requires, more than ever before, an urgent need for novel and more effective drugs. In this regard, the present study sheds light on the diversity and antimicrobial potential of Actinobacteria isolates in mining ecosystems. We have indeed investigated the production of bioactive molecules by the Actinobacteria isolated from abandoned mining areas in Midelt, Morocco, where average contents of lead (Pb) and cadmium (Cd) are higher than normal world levels. One hundred and forty-five Actinobacteria isolates were isolated and characterized based on morphological, chemotaxonomical, biochemical, and molecular data. Most of the 145 isolates were identified as Streptomyces. Isolates affiliated to the genera Amycolatopsis, Lentzea, Actinopolymorpha, and Pseudonocardia were also found. Antimicrobial producing potentials of Actinobacteria isolates were assessed against eight test microorganisms Gram+ and Gram- bacteria and yeast. Out of 145 isolates, 51 showed antimicrobial activities against at least one test microorganism. 31 isolates inhibited only bacteria, 7 showed activity against bacteria and Candida albicans, and 13 displayed activity against C. albicans solely. Our findings suggest that Actinobacteria isolated from natural heavy metal ecosystems may be a valuable source of novel secondary metabolites and therefore of new biotechnologically promising antimicrobial compounds.
Collapse
|
24
|
Miller T, Waturangi DE, Yogiara. Antibiofilm properties of bioactive compounds from Actinomycetes against foodborne and fish pathogens. Sci Rep 2022; 12:18614. [PMID: 36329158 PMCID: PMC9633603 DOI: 10.1038/s41598-022-23455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, bacteria can form biofilms, multi-layered structures that adhere microbial populations to solid surfaces by exopolysaccharides, proteins, and nucleic acids. In addition to causing foodborne infections, biofilms can be a major problem in aquaculture. Actinomycetes extracts have previously demonstrated antibiofilm activity against multiple foodborne and fish pathogens, and further characterization of these extracts is needed. In this study, we identified the chemical structures and antibiofilm properties of four extracts and determined the genetic similarity of the isolates to known Streptomyces isolates. We found that several extracts contained multiple antibiofilm compounds, and the antibiofilm activities of all extracts were most stable at pH 6. Furthermore, the antibiofilm inhibition and destruction activities of the isolates were stable at different temperatures. All of crude extracts demonstrated activity against biofilms formed by foodborne and fish pathogens on the surface of stainless-steel coupons as well as polystyrene that commonly used in industrial equipment. Using PCR 16S-rRNA gene and DNA sequencing analysis, the four Actinomycetes isolates were found to be 99% (1 AC), 97% (20 PM), 95% (16 PM), and 85% (18 PM) similar to Streptomyces. Biofilm structure were analyzed using Scanning Electron Microscopy coupled with Energy-Dispersive Spectrometry analysis. Coniine/(S)-2-propylpiperidine was the most active fraction of the crude extracts of the 1 AC, 20 PM, and 16 PM isolates, and piperidine, 2-(tetrahydro-2-furanyl) was most active in the 18 PM isolate.
Collapse
Affiliation(s)
- Tracy Miller
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| | - Diana Elizabeth Waturangi
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| | - Yogiara
- grid.443450.20000 0001 2288 786XBiotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta 12930 Indonesia
| |
Collapse
|
25
|
Characterization of Streptomyces Species and Validation of Antimicrobial Activity of Their Metabolites through Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Finding new antibacterial agents from natural products is urgently necessary to address the growing cases of antibiotic-resistant pathogens. Actinomycetes are regarded as an excellent source of therapeutically important secondary metabolites including antibiotics. However, they have not yet been characterized and explored in great detail for their utility in developing countries such as Nepal. In silico molecular docking in addition to antimicrobial assays have been used to examine the efficacy of chemical scaffolds biosynthesized by actinomycetes. This paper depicts the characterization of actinomycetes based on their morphology, biochemical tests, and partial molecular sequencing. Furthermore, antimicrobial assays and mass spectrometry-based metabolic profiling of isolates were studied. Seventeen actinomycete-like colonies were isolated from ten soil samples, of which three isolates showed significant antimicrobial activities. Those isolates were subsequently identified to be Streptomyces species by partial 16S rRNA gene sequencing. The most potent Streptomyces species_SB10 has exhibited an MIC and MBC of 1.22 μg/mL and 2.44 μg/mL, respectively, against each Staphylococcus aureus and Shigella sonnei. The extract of S. species_SB10 showed the presence of important metabolites such as albumycin. Ten annotated bioactive metabolites (essramycin, maculosin, brevianamide F, cyclo (L-Phe-L-Ala), cyclo (L-Val-L-Phe), cyclo (L-Leu-L-Pro), cyclo (D-Ala-L-Pro), N6, N6-dimethyladenosine, albumycin, and cyclo (L-Tyr-L-Leu)) were molecularly docked against seven antimicrobial target proteins. Studies on binding energy, docking viability, and protein-ligand molecular interactions showed that those metabolites are responsible for conferring antimicrobial properties. These findings indicate that continuous research on the isolation of the Streptomyces species from Nepal could lead to the discovery of novel and therapeutically relevant antimicrobial agents in the future.
Collapse
|
26
|
N-Succinyltransferase Encoded by a Cryptic Siderophore Biosynthesis Gene Cluster in Streptomyces Modifies Structurally Distinct Antibiotics. mBio 2022; 13:e0178922. [PMID: 36040031 DOI: 10.1128/mbio.01789-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibiotic desertomycin A and its previously undescribed inactive N-succinylated analogue, desertomycin X, were isolated from Streptomyces sp. strain YIM 121038. Genome sequencing and analysis readily identified the desertomycin biosynthetic gene cluster (BGC), which lacked genes encoding acyltransferases that would account for desertomycin X formation. Scouting the genome for putative N-acyltransferase genes led to the identification of a candidate within a cryptic siderophore BGC (csb) encoding a putative homologue of the N6'-hydroxylysine acetyltransferase IucB. Expression of the codon-optimized gene designated csbC in Escherichia coli yielded the recombinant protein that was able to N-succinylate desertomycin A as well as several other structurally distinct antibiotics harboring amino groups. Some antibiotics were rendered antibiotically inactive due to the CsbC-catalyzed succinylation in vitro. Unlike many known N-acyltransferases involved in antibiotic resistance, CsbC could not efficiently acetylate the same antibiotics. When expressed in E. coli, CsbC provided low-level resistance to kanamycin and ampicillin, suggesting that it may play a role in antibiotic resistance in natural habitats, where the concentration of antibiotics is usually low. IMPORTANCE In their natural habitats, bacteria encounter a plethora of organic compounds, some of which may be represented by antibiotics produced by certain members of the microbial community. A number of antibiotic resistance mechanisms have been described, including those specified by distinct genes encoding proteins that degrade, modify, or expel antibiotics. In this study, we report identification and characterization of an enzyme apparently involved in the biosynthesis of a siderophore, but also having the ability of modify and thereby inactivate a wide variety of structurally diverse antibiotics. This discovery sheds light on additional capabilities of bacteria to withstand antibiotic treatment and suggests that enzymes involved in secondary metabolism may have an additional function in the natural environment.
Collapse
|
27
|
Madapoosi SS, Cruickshank-Quinn C, Opron K, Erb-Downward JR, Begley LA, Li G, Barjaktarevic I, Barr RG, Comellas AP, Couper DJ, Cooper CB, Freeman CM, Han MK, Kaner RJ, Labaki W, Martinez FJ, Ortega VE, Peters SP, Paine R, Woodruff P, Curtis JL, Huffnagle GB, Stringer KA, Bowler RP, Esther CR, Reisdorph N, Huang YJ. Lung Microbiota and Metabolites Collectively Associate with Clinical Outcomes in Milder Stage Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 206:427-439. [PMID: 35536732 PMCID: PMC11418810 DOI: 10.1164/rccm.202110-2241oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Kristopher Opron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Lesa A. Begley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Gen Li
- Department of Biostatistics, School of Public Health
| | | | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University Medical Center, New York, New York
| | | | | | | | | | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Wassim Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Victor E. Ortega
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Stephen P. Peters
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Prescott Woodruff
- University of California at San Francisco, San Francisco, California
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Molecular, Cellular and Developmental Biology
| | | | - Russell P. Bowler
- School of Medicine, University of Colorado, Aurora, Colorado; and
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Charles R. Esther
- Division of Pediatric Pulmonology, and
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Yvonne J. Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
29
|
Antibacterial Activity of a Novel Oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. Carotovora. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082384. [PMID: 35458585 PMCID: PMC9032947 DOI: 10.3390/molecules27082384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
The present study aims to characterize and predict models for antibacterial activity of a novel oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. carotovora using an adaptive neuro-fuzzy inference system and an artificial neural network. The mathematical predication models were used to determine the optimal conditions to produce oligosaccharide and determine the relationship between the factors (pH, temperature, and time). The characteristics of the purified antibacterial agent were determined using ultraviolet spectroscopy (UV/Vis), infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), and mass spectrometry (MS). The best performances for the model were 39.45 and 35.16 recorded at epoch 1 for E. carotovora Erw5 and E. carotovora EMCC 1687, respectively. The coefficient (R2) of the training was more than 0.90. The highest antimicrobial production was recorded after 9 days at 25 °C and a pH of 6.2, at which more than 17 mm of the inhibition zone was obtained. The mass spectrum of antimicrobial agent (peak at R.T. = 3.433 of fraction 6) recorded two molecular ion peaks at m/z = 703.70 and m/z = 338.30, corresponding to molecular weights of 703.70 and 338.30 g/mol, respectively. The two molecular ion peaks matched well with the molecular formulas C29H53NO18 and C14H26O9, respectively, which were obtained from the elemental analysis result. A novel oligosaccharide from Streptomyces californics with potential activity against E. carotovora EMCC 1687 and E. carotovora Erw5 was successfully isolated, purified, and characterized.
Collapse
|
30
|
Bano N, Siddiqui S, Amir M, Zia Q, Banawas S, Iqbal D, Roohi. Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina. Saudi J Biol Sci 2022; 29:1858-1868. [PMID: 35280579 PMCID: PMC8913384 DOI: 10.1016/j.sjbs.2021.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022] Open
Abstract
The study aimed to assess the proficiency of secondary metabolites (SMs) synthesized by actinobacteria isolated from the rhizospheric soil of Rauwolfia serpentina for its antimicrobial and anti-biofilm activity. After morphological and biochemical identification of actinobacteria, primary and secondary screening was done for specific metabolite production. The secondary metabolites were then tested for their antioxidant, antibacterial, and antibiofilm potential. Out of 29 bacterial colonies isolated, only one emerged as a novel isolate, Microbacterium LA2(R). Partial 16S rRNA gene sequence of the isolate LA2(R) was deposited in NCBI GenBank with accession number MN560041. The highest antioxidant capacity of the methanolic extract the novel isolate was found to be 474.183 µL AAE/mL and 319.037 µL AAE/mL by DPPH assay and ABTS assay respectively; three folds higher than the control. These results were further supported by the high total phenolic (194.95 gallic acid equivalents/mL) and flavonoid contents (332.79 µL quercetin equivalents/mL) of the methanolic extract. GC–MS analysis revealed the abundance of antibacterial compounds; where, n-Hexadecanoic acid was found to be the major compound present with a peak of 14 min retention time (RT) and 95% similarity index. MIC value of the metabolite was noted to be around 132.28 ± 84.48 μg/mL. The IC50 value was found to be 74.37, 71.33, 66.28 and 84.48 μg/mL against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Salmonella abony, respectively. Treatment with IC50 of the extract decreased the biofilm formation up to 70%–80% against pathogenic strains viz. Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Salmonella abony. These significant activities of Microbacterium sp. LA2(R) suggests that it could be utilized for antibiotic production for human welfare and in various important industrial applications.
Collapse
|
31
|
Wang Z, Lin Y, Liu L, Zheng B, Zhang Y, Zeng H. Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1525-1535. [PMID: 34989559 DOI: 10.1021/acs.jafc.1c06000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim was to investigate the effect of lotus seed resistant starch (LRS) on lactic acid (LA) conversion to butyric acid (BA) fermented by rat fecal microbiota to construct an acetyl CoA pathway. According to growth curves, the microbiota compositions at 10 and 36 h were further analyzed. The microbiota in the LRS group had higher richness and diversity compared to glucose (GLU) and high amylose maize starch (HAMS). Moreover, LRS and isotope LA promoted the growth of Lactobacillus and Bifidobacterium, promoted BA production, and inhibited the growth of Escherichia-Shigella. The BUT pathway played a dominant role in three groups. At 10 h, Escherichia-Shigella and Bifidobacterium showed a negative correlation with BUT and a positive correlation with BUK, whereas Escherichia-Shigella, Allobaculum, Bifidobacterium, and Ralstonia showed a positive correlation with BUT and BUK at 36 h. [3-13C] LA was converted to [4-13C] BA by the isotope labeling technique. Finally, LRS promoted LA conversion to BA mainly by the BUT pathway in intestinal microbiota, especially including Allobaculum, Bifidobacterium, and Ralstonia.
Collapse
Affiliation(s)
- Zhiyun Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Abstract
Bacteria of the genus Streptomyces produce a very large number of secondary metabolites, many of which are of vital importance to modern medicine. There is great interest in the discovery of novel pharmaceutical compounds derived from strepomycetes, since novel antibiotics, anticancer and compounds for treating other conditions are urgently needed. Greece, as proven by recent research, possesses microbial reservoirs with a high diversity of Streptomyces populations, which provide a rich pool of strains with potential pharmaceutical value. This review examines the compounds of pharmaceutical interest that have been derived from Greek Streptomyces isolates. The compounds reported in the literature include antibiotics, antitumor compounds, biofilm inhibitors, antiparasitics, bacterial toxin production inhibitors and antioxidants. The streptomycete biodiversity of Greek environments remains relatively unexamined and is therefore a very promising resource for potential novel pharmaceuticals.
Collapse
|