1
|
Ruvubu SB, Roy I. Advances in Heavy Metal Sensing: Utilizing Immobilized Chromogenic Reagents, Nanomaterials Perovskite and Nanonzymes. Crit Rev Anal Chem 2025:1-28. [PMID: 39755954 DOI: 10.1080/10408347.2024.2440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes. Immobilized chromogenic reagents, with their high specificity and visual detection capabilities, provide cost effective solutions for heavy metal detection. Techniques to improve their stability and sensitivity, including surface modifications and hybrid materials, are discussed. Nanomaterials, including quantum dots, metal-organic frameworks, and carbon-based nanostructures, have emerged as versatile platforms due to their unique physicochemical properties. These materials enable highly sensitive and selective sensing mechanisms, such as fluorescence quenching and electrochemical sensing. Perovskites, a class of materials known for their tunable optoelectronic properties, have shown great promise in the optical and electrochemical detection of heavy metals. Despite challenges related to stability and environmental safety, their potential for low-cost and scalable applications is remarkable. Nanozymes, synthetic enzyme mimics, offer robust and catalytic sensing capabilities, particularly in colorimetric and electrochemical analyses. Their superior stability and reusability compared to natural enzymes make them ideal candidates for environmental monitoring. This review provides a comparative analysis of these techniques, highlighting their strengths, limitations, and real-world applicability. Emerging trends include hybrid systems that combine the benefits of multiple approaches. The discussion concludes by addressing current challenges and providing perspectives on future directions for advancing heavy metal detection technologies to improve environmental health and safety. Integrating chromogenic reagents with perovskite materials represents a promising direction for developing robust, sensitive, and easy-to-use sensors for health and environmental safety monitoring.
Collapse
Affiliation(s)
- Sylvanus Bisaba Ruvubu
- Department of Chemistry, University of Delhi, New Delhi, India
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Novelli F. Terahertz Transmission through a Gold Mirror or Electrode. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3942. [PMID: 39203120 PMCID: PMC11355291 DOI: 10.3390/ma17163942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Hundreds of nanometer-thick metal layers are used as electrical conductors in various technologies and research fields. The intensity of the radiation transmitted by such devices is a small fraction and is often neglected. Here, it is shown that intense terahertz time-domain spectroscopy can probe the absolute electro-optical properties of a 100 nm thick gold sample in transmission geometry without the need to apply electrical contacts or handle wires. The terahertz conductivity of the metal film agrees with that obtained from standard contact measurements of the static component within the error bars. This experimental approach can help to quantify the electrical properties of opaque and conductive materials such as the composite electrodes used in photovoltaic or electrochemical applications, and in the quality control of metal films.
Collapse
Affiliation(s)
- Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Jiahong L, Jialu S, Chenhui P, Guoze Y. The Materials and Application of Artificial Light Harvesting System Based on Supramolecular Self‐assembly. ChemistrySelect 2023. [DOI: 10.1002/slct.202202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liu Jiahong
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Sun Jialu
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Pan Chenhui
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| | - Yang Guoze
- School of Chemistry and Chemical Engineering South China University of Technology GuangZhou GuangDong China
| |
Collapse
|
4
|
Mao S, Shi JW, Sun G, Zhang Y, Ma D, Song K, Lv Y, Zhou J, Wang H, Cheng Y. PdS Quantum Dots as a Hole Attractor Encapsulated into the MOF@Cd 0.5Zn 0.5S Heterostructure for Boosting Photocatalytic Hydrogen Evolution under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48770-48779. [PMID: 36259606 DOI: 10.1021/acsami.2c15052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a new photocatalyst PdS@UiOS@CZS is successfully synthesized, where thiol-functionalized UiO-66 (UiOS), a metal-organic framework (MOF) material, is used as a host to encapsulate PdS quantum dots (QDs) in its cages, and Cd0.5Zn0.5S (CZS) solid solution nanoparticles (NPs) are anchored on its outer surface. The resultant PdS@UiOS@CZS with an optimal ratio between components displays an excellent photocatalytic H2 evolution rate of 46.1 mmol h-1 g-1 under visible light irradiation (420∼780 nm), which is 512.0, 9.2, and 5.9 times that of pure UiOS, CZS, and UiOS@CZS, respectively. The reason for the significantly enhanced performance is that the encapsulated PdS QDs strongly attract the photogenerated holes into the pores of UiOS, while the photogenerated electrons are effectively migrated to CZS due to the heterojunction effect, thereby effectively suppressing the recombination of charge carriers for further high-efficiency hydrogen production. This work provides an idea for developing efficient photocatalysts induced by hole attraction.
Collapse
Affiliation(s)
- Siman Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guotai Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yijun Zhang
- Key Laboratory of Electronic Ceramics and Devices of Ministry of Education, Department of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yixuan Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Liang R, Wang S, Lu Y, Yan G, He Z, Xia Y, Liang Z, Wu L. Assembling Ultrafine SnO 2 Nanoparticles on MIL-101(Cr) Octahedrons for Efficient Fuel Photocatalytic Denitrification. Molecules 2021; 26:7566. [PMID: 34946648 PMCID: PMC8708904 DOI: 10.3390/molecules26247566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Effectively reducing the concentration of nitrogen-containing compounds (NCCs) remains a significant but challenging task in environmental restoration. In this work, a novel step-scheme (S-scheme) SnO2@MCr heterojunction was successfully fabricated via a facile hydrothermal method. At this heterojunction, MIL-101(Cr) octahedrons are decorated with highly dispersed SnO2 quantum dots (QDs, approximate size 3 nm). The QDs are evenly wrapped around the MIL-101(Cr), forming an intriguing zero-dimensional/three-dimensional (0D/3D) S-scheme heterostructure. Under simulated sunlight irradiation (280 nm < λ < 980 nm), SnO2@MCr demonstrated superior photoactivity toward the denitrification of pyridine, a typical NCC. The adsorption capacity and adsorption site of SnO2@MCr were also investigated. Tests using 20%SnO2@MCr exhibited much higher activity than that of pure SnO2 and MIL-101(Cr); the reduction ratio of Cr(VI) is rapidly increased to 95% after sunlight irradiation for 4 h. The improvement in the photocatalytic activity is attributed to (i) the high dispersion of SnO2 QDs, (ii) the binding of the rich adsorption sites with pyridine molecules, and (iii) the formation of the S-scheme heterojunction between SnO2 and MIL-101(Cr). Finally, the photocatalytic mechanism of pyridine was elucidated, and the possible intermediate products and degradation pathways were discussed.
Collapse
Affiliation(s)
- Ruowen Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Shihui Wang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi Lu
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
- Xiamen Ocean Vocational College, Xiamen 361000, China
| | - Zhoujun He
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Yuzhou Xia
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Zhiyu Liang
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China; (R.L.); (S.W.); (Y.L.); (G.Y.); (Z.H.)
- Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|