1
|
Hassan A, Zaib S, Anjum T. Evaluation of antifungal potentials of Albizia kalkora extract as a natural fungicide: In vitro and computational studies. Bioorg Chem 2024; 150:107561. [PMID: 38936050 DOI: 10.1016/j.bioorg.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.
Collapse
Affiliation(s)
- Ahmad Hassan
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
2
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
3
|
Sharma AD, Kaur I, Chauhan A. Compositional profiling and molecular docking studies of Eucalyptus polybrachtea essential oil against mucormycosis and aspergillosis. BIOTECHNOLOGIA 2023; 104:233-245. [PMID: 37850116 PMCID: PMC10578112 DOI: 10.5114/bta.2023.130727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 10/19/2023] Open
Abstract
Essential oil (EO) from Eucalyptus polybrachtea is used as complementary and traditional medicine worldwide. The present study aimed at compositional profiling of EO and molecular docking of EO's bioactive compound 1,8 cineole against fungal enzymes involved in the riboflavin synthesis pathway, namely riboflavin synthase (RS), riboflavin biosynthesis protein RibD domain-containing protein (RibD), and 3,4-dihydroxy-2-butanone 4-phosphate synthase (DBPS) as apposite sites for drug designing against aspergillosis and mucormycosis, and in vitro confirmation. The compositional profile of EO was completed by GC-FID analysis. For molecular docking, the Patchdock tool was used. The ligand-enzyme 3-D interactions were examined, and ADMET properties (absorption, distribution, metabolism, excretion, and toxicity) were calculated. GC-FID discovered the occurrence of 1,8 cineole as a major component in EO, which was subsequently used for docking analysis. The docking analysis revealed that 1,8 cineole actively bound to RS, RibD, and DBPS fungal enzymes. The results of the docking studies demonstrated that the ligand 1,8 cineole exhibited H-bond and hydrophobic interactions with RS, RibD, and DBPS fungal enzymes. 1,8 cineole obeyed Lpinsky's rule and exhibited adequate bioactivity. Wet-lab authentication was achieved by using three fungal strains: Aspergillus niger, Aspergillus oryzae, and Mucor sp. Wet lab results indicated that EO was able to inhibit fungal growth.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, Punjab, India
| | - Inderjeet Kaur
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, Punjab, India
| | - Amrita Chauhan
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, Punjab, India
| |
Collapse
|
4
|
Green synthesis of nanoparticles using botanicals and their application in management of fungal phytopathogens: a review. Arch Microbiol 2023; 205:94. [PMID: 36800046 DOI: 10.1007/s00203-023-03431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Green synthesis of nanoparticles is an emerging aspect in plant disease management that blends nanotechnology and plant-derived ingredients to produce a biocontrol formulation. Different physical and chemical processes employed in the synthesis of nanoparticles are polluting, expensive, and also release hazardous by- products. The range of secondary metabolites present in plants makes them efficient reducing and stabilizing agent during the synthesis process. These metabolites serve a vital role in plant defense against the invasion of phytopathogens including fungi, bacteria, viruses, insect pests, etc. The plant metabolites, such as sugars, terpenoids, polyphenols, alkaloids, phenolic acids, and proteins, have been shown to be crucial in the reduction of metal ions into nanoparticles. In green synthesis of nanoparticles, the plant extracts are used as potential reducing and capping. This also restricts the formation of clusters or aggregates and improves the colloidal stability. The nanoparticles exhibit excellent antimycotic against a variety of phytopathogens and are very efficient in managing plant diseases. The aim of this review is to highlight plants, phytochemicals exhibiting antifungal properties, green synthesis of nanoparticles using plant material and their antimycotic activity.
Collapse
|
5
|
El-Rahmana SNA, Abubshaitb SA, Abubshaitc HA, Elsharifb AM, Kamound M. The anti-aging, anti-tuberculosis and antioxidant potential benefits of Saudi Arabia Olea-Europaea Leaves extracts. BRAZ J BIOL 2023; 84:e270885. [PMID: 37132677 DOI: 10.1590/1519-6984.270885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/18/2023] [Indexed: 05/04/2023] Open
Abstract
The olive leaf extract and olive leaf indicated a high potential for application in food additives and foodstuffs. It could be these bio-products useful and important in condition therapy related with oxidative stress and can use it to develop functional foods and to improve the food's shelf life. The olive leaf chemical composition of Oleaeuropaea L. grown from eljouf in Saudi Arabia, using solvents of increasing polarity cyclohexane, dichloromethane, chloroform, ethyl acetate, methanol and ethanol was determined using by GC/MS. Furthermore, the antioxidant activity (diphenylpicrylhydrazyl (DPPH), anti-aging, and anti-tuberculosis of olive leaf extracts were evaluated. The results indicated that extract of Oleaeuropaea L. has a considerable contains in polyphenols (hydroxytyrosol, oleuropein and their derivatives) regarding its antioxidant effects, the major components were detected by GC/MS in Olea dichloromethane extract are Hexadecanoic acid (15.82%), 7(4Dimethylaminophenyl)3,3,12trimethyl3,12dihydro6 Hpyrano[2,3c]acridin 6 one (11.21%), and in Olea chloroform extract are Hexatriacontane (12.68%), nTetratr iacontane (10.95%). The results concluded that the plant extract of chloroform showed no anti-aging activities and the lower anti-aging activities for cyclohexane extract, while, the Olea dichloromethane extract was the most active extract. The obtained data confirmed that the most active extract of anti-tubercolisis was for chloroform and ethyl acetate extract, while, anti-tubercolisis activity of ethanolic extract was the lower. The extract amount as well as the solvent polarity influence the inhibitory activity. A favorable connection was demonstrated inter alia the leaf extracts antioxidant activity and the content of total phenol.
Collapse
Affiliation(s)
- S N Abd El-Rahmana
- Food Technology Research Institute, Agricultural Research Center, Department of Crops Technology Research, Giza, Egypt
| | - S A Abubshaitb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - H A Abubshaitc
- Imam Abdulrahman Bin Faisal University, Department of Basic Sciences, Dammam, Saudi Arabia
| | - A M Elsharifb
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Chemistry, Dammam, Saudi Arabia
| | - M Kamound
- Technopark of Borj-Cedria, Centre of Research and Water Technologies, Laboratory Water, Membrane and Environmental Biotechnology, Soliman, Tunisia
| |
Collapse
|
6
|
Omar HS, Abd El-Rahman SN, AlGhannam SM, Reyad NEHA, Sedeek MS. Correction: Omar et al. Antifungal Evaluation and Molecular Docking Studies of Olea europaea Leaf Extract, Thymusvulgaris and Boswellia carteri Essential Oil as Prospective Fungal Inhibitor Candidates. Molecules 2021, 26, 6118. Molecules 2022; 27:molecules27123794. [PMID: 35745088 PMCID: PMC9228744 DOI: 10.3390/molecules27123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Hanaa S. Omar
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- GMO Laboratory, Faculty of Agriculture, Cairo University, Research Park, CURP, Giza 12613, Egypt
- Correspondence: (H.S.O.); (S.N.A.E.-R.)
| | - Soheir N. Abd El-Rahman
- Crops Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (H.S.O.); (S.N.A.E.-R.)
| | - Sheikha M. AlGhannam
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Nour El-Houda A. Reyad
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mohamed S. Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
7
|
Sharma AD, Kaur I. Targeting UDP-Glycosyltransferase, Glucosamine-6-Phosphate Synthase and Chitin Synthase by Using Bioactive 1,8 Cineole for “Aspergillosis” Fungal Disease Mutilating COVID-19 Patients: Insights from Molecular Docking, Pharmacokinetics and In-vitro Studies. CHEMISTRY AFRICA 2022. [PMCID: PMC8739004 DOI: 10.1007/s42250-021-00302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SARS-CoV-2 (COVID-19)-associated co-infections like “Aspergillosis”, has recently baffled the world. Due to its key role in cell wall synthesis, in the present study UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase have been chosen as appropriate targets for molecular docking. The objective of the present study was molecular docking of eucalyptus essential oil component 1,8 cineole against cell wall enzymes followed by in vitro validation. For molecular docking, patch-dock web based online tool was used. Ligand–Protein 2D and 3D Interactions were also studied. Drug likeliness, toxicity profile and cancer cell line toxicity were also studied. Molecular docking results indicated that 1,8 cineole form hydrogen bonding and hydrophobic interactions with UDP-glycosyltransferase, glucosamine-6-phosphate synthase and chitin synthase enzymes. 1,8 cineole also depicted drug likeliness by showing compliance with the LIPINSKY rule, sufficient level of bioactivity and cancer cell line toxicity thus signifying its role as a potent anti-fungal drug.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| | - Inderjeet Kaur
- Post Graduate Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| |
Collapse
|
8
|
Sharma AD, Kaur I. Essential oil from Cymbopogon citratus exhibits "anti-aspergillosis" potential: in-silico molecular docking and in vitro studies. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:23. [PMID: 35125860 PMCID: PMC8800409 DOI: 10.1186/s42269-022-00711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Aspergillosis, has recently confounded some states of India. Due to major role in fungal cell wall synthesis, in the present study UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase were chosen as an appropriate sites to design drug. The objective of present study was molecular docking of lemon grass essential oil component citral and in vitro validation. GC-FID analysis was used to find out aromatic profile. For docking, Patch-dock analysis was used. Ligand Protein 2D and 3D Interactions were also studied. Drug likeliness, and toxicity profile were also studied. Docking analysis indicated effective binding of citral to UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase. In vitro validation was performed by fungal strain Aspergillus fumigatum. RESULTS GC-FID profiling revealed the presence of citral as major bioactive compound. Interactions results indicated that, UDP-glycosyltransferase, Glucosamine-6-phosphate synthase and chitin synthase enzymes and citral complexes forms hydrogen and hydrophobic interactions. Citral also depicted drug likeliness by LIPINSKY rule, sufficient level of bioactivity, drug likeliness and toxicity. CONCLUSION In vitro results revealed that lemon grass oil was able to inhibit growth of fungal strains toxicity thus signifying its role as potent anti-fungal drug. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-022-00711-5.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| | - Inderjeet Kaur
- Department of Biotechnology, Lyallpur Khalsa College Jalandhar, Jalandhar, India
| |
Collapse
|