1
|
Zhang Y, Chen R, Liu Y, Xu S, Gao S, Zhang H, Miao H, Qin L, Zhou X, Thakur K, Li C, Li J, Wei P, Wei ZJ. Metabolite differences and molecular mechanism between dehiscent and indehiscent capsule of mature sesame. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100231. [PMID: 39687584 PMCID: PMC11648792 DOI: 10.1016/j.fochms.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
The loss of sesame capsule seed prior to harvest poses a significant economical challenge in mechanized production. The metabolites involved in capsule closure are still unclear. Using comparative metabolome and transcriptome analysis, this work investigated the molecular regulation and enrichment pathways in two sesame types of indehiscent capsule WanZhi28 (ND) and dehiscent capsule WanZhi2 (WZ2). The findings demonstrated that genes and metabolites were significantly enriched in lignin synthesis-related pathways. Furthermore, data suggests that lipid and sugar metabolism may have an impact on capsule closure. Apart from its function in cell signaling, the latter may contribute to the glycosylation of lignin monomers, while the former may provide ATP for cellular microtubule movement. This work concurrently focused on a large number of differentially expressed transcription factors linked to the sesame capsule's anti-cleft mechanism, providing new evidence for the discovery and use of functional markers and genes for capsule dehiscence. The identification of key pathways and regulatory mechanisms offers valuable information for developing strategies to mitigate seed loss during harvest, ultimately contributing to more efficient and profitable sesame production.
Collapse
Affiliation(s)
- Yinping Zhang
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Ruirui Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Yujun Liu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Shuwen Xu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Shuguang Gao
- Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan province, PR China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Lingling Qin
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Xiangyu Zhou
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Kiran Thakur
- School of Biological Science And Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Cheng Li
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Pengcheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Zhao-Jun Wei
- School of Biological Science And Engineering, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
2
|
Chen D, Chen X, Zheng X, Zhu J, Xue T. Combined metabolomic and transcriptomic analysis reveals the key genes for triterpenoid biosynthesis in Cyclocarya paliurus. BMC Genomics 2024; 25:1197. [PMID: 39695362 DOI: 10.1186/s12864-024-11125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cyclocarya paliurus is a high-value tree, and it contains a variety of bioactive secondary metabolites which have broad application prospects in medicine, food and health care. Triterpenoids can improve the bioactive function of C. paliurus health tea and also improve the efficacy of health care tea. RESULTS The results of this study showed that there were 69 kinds were terpenoids, and triterpenoids accounted for more than 80%. We excavated 5 kinds of triterpenoid metabolites with high content and significant difference dynamics, namely, corosolic acid, asiatic acid, maslinic acid, ursolic acid and oleanolic acid. The co-expression analysis identified CYP71D8 and CYP716A15 co-expressed with β-AS may generate oleanane type triterpenoids by modifying β-amyrin, while CYP71AN24 and CYP98A2 co-expressed with LUS may play a key role in lupine type triterpenoids biosynthesis. MYB,Whirly,WRKY and bHLH families, which showed strong correlation with function genes, may play an important role in the regulation of P450 and OSC expression. A total of 20 modules were identified by WGCNA analysis, and CYP71AU50 and CYP716A15 in tan and orange modules may play a major role in the synthesis of oleanolic acid, ursolic acid and asiatic acid, while CYP82D47 in lightcyan 1 module may be the hub gene for the biosynthesis of corosolic acid and maslinic acid. CONCLUSIONS Our findings mined candidate genes closely related to triterpenoid synthesis in C. paliurus. The results of this paper can provide scientific reference for breeding high-content triterpenoid varieties of C. paliurus.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Xupeng Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
3
|
Chauhan P, Wadhwa K, Mishra R, Gupta S, Ahmad F, Kamal M, Iqbal D, Alsaweed M, Nuli MV, Abomughaid MM, Almutary AG, Mishra PC, Jha SK, Ojha S, Nelson VK, Dargar A, Singh G, Jha NK. Investigating the Potential Therapeutic Mechanisms of Puerarin in Neurological Diseases. Mol Neurobiol 2024; 61:10747-10769. [PMID: 38780722 DOI: 10.1007/s12035-024-04222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Plants and their derived phytochemicals have a long history of treating a wide range of illnesses for several decades. They are believed to be the origin of a diverse array of medicinal compounds. One of the compounds found in kudzu root is puerarin, a isoflavone glycoside commonly used as an alternative medicine to treat various diseases. From a biological perspective, puerarin can be described as a white needle crystal with the chemical name of 7-hydroxy-3-(4-hydroxyphenyl)-1-benzopyran-4-one-8-D-glucopyranoside. Besides, puerarin is sparingly soluble in water and produces no color or light yellow solution. Multiple experimental and clinical studies have confirmed the significant therapeutic effects of puerarin. These effects span a wide range of pharmacological effects, including neuroprotection, hepatoprotection, cardioprotection, immunomodulation, anticancer properties, anti-diabetic properties, anti-osteoporosis properties, and more. Puerarin achieves these effects by interacting with various cellular and molecular pathways, such as MAPK, AMPK, NF-κB, mTOR, β-catenin, and PKB/Akt, as well as different receptors, enzymes, and growth factors. The current review highlights the molecular mechanism of puerarin as a neuroprotective agent in the treatment of various neurodegenerative and neurological diseases. Extensive cellular, animal, and clinical research has provided valuable insights into its effectiveness in conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, cerebral stroke, depression, and more.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Gujrat, Vadodara, 391760, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Abha Dargar
- Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Virudhunagar, Tamilnadu, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| |
Collapse
|
4
|
Huang XZ, Gong SD, Shang XH, Gao M, Zhao BY, Xiao L, Shi PL, Zeng WD, Cao S, Wu ZD, Song JM, Chen LL, Yan HB. High-integrity Pueraria montana var. lobata genome and population analysis revealed the genetic diversity of Pueraria genus. DNA Res 2024; 31:dsae017. [PMID: 38809753 PMCID: PMC11149379 DOI: 10.1093/dnares/dsae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Pueraria montana var. lobata (P. lobata) is a traditional medicinal plant belonging to the Pueraria genus of Fabaceae family. Pueraria montana var. thomsonii (P. thomsonii) and Pueraria montana var. montana (P. montana) are its related species. However, evolutionary history of the Pueraria genus is still largely unknown. Here, a high-integrity, chromosome-level genome of P. lobata and an improved genome of P. thomsonii were reported. It found evidence for an ancient whole-genome triplication and a recent whole-genome duplication shared with Fabaceae in three Pueraria species. Population genomics of 121 Pueraria accessions demonstrated that P. lobata populations had substantially higher genetic diversity, and P. thomsonii was probably derived from P. lobata by domestication as a subspecies. Selection sweep analysis identified candidate genes in P. thomsonii populations associated with the synthesis of auxin and gibberellin, which potentially play a role in the expansion and starch accumulation of tubers in P. thomsonii. Overall, the findings provide new insights into the evolutionary and domestication history of the Pueraria genome and offer a valuable genomic resource for the genetic improvement of these species.
Collapse
Affiliation(s)
- Xuan-Zhao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shao-Da Gong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao-hong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Bo-Yuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Ping-li Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Wen-dan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Zheng-dan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Hua-bing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi 530007, China
| |
Collapse
|
5
|
Yang HB, Song JY, Xu C, Li J, Zhang C, Xie S, Teng CL. Interventional effects of Pueraria oral liquid on T2DM rats and metabolomics analysis. Biomed Pharmacother 2024; 175:116780. [PMID: 38781864 DOI: 10.1016/j.biopha.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.
Collapse
Affiliation(s)
- Hong-Bo Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jie-Yu Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jin Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Sun Xie
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Chun-Li Teng
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| |
Collapse
|
6
|
Liga S, Paul C. Puerarin-A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. Int J Mol Sci 2024; 25:5222. [PMID: 38791264 PMCID: PMC11121215 DOI: 10.3390/ijms25105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.
Collapse
Affiliation(s)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Vasile Pârvan No. 6, 300223 Timisoara, Romania;
| |
Collapse
|
7
|
Yue S, Liu Y, Zhou R, Zhan Z, Kang L, Huang L, Yuan Y, Nan T. A Highly Sensitive and Rapid Colloidal Gold Immunoassay for Puerarin Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8817-8822. [PMID: 38578981 DOI: 10.1021/acs.jafc.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Radix Puerariae is a traditional Chinese medicinal material with a rich history of use in East and Southeast Asia. Puerarin, a unique component of the Pueraria genus, serves as a quality control marker for herbal medicines like Pueraria lobata and Pueraria thomsonii in China, displaying diverse pharmacological properties. This study developed puerarin colloidal gold immunoassay dipsticks utilizing an anti-puerarin monoclonal antibody, resulting in a fast and sensitive detection method with a limit of 500-1000 ng·mL-1. Evaluation using tap water-extracted P. lobata and P. thomsonii samples showed consistent results compared to LC-MS analysis. Cross-reactivity assessments of puerarin analogs revealed minimal interference, affirming the dipstick's reliability for distinguishing between the two species.
Collapse
Affiliation(s)
- Shiyan Yue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yunxiang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rongrong Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Nantong Third People's Hospital, Nantong 226006, China
| | - Zhilai Zhan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
8
|
Lee S, Oh S, Zheng Q, Zheng S, Kim M, Park S, Choi W, Yin CS, Yi TH. Photoprotective effects of Lithospermum erythrorhizon and Pueraria lobata extracts on UVB-induced photoaging: A study on skin barrier protection. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12950. [PMID: 38288763 DOI: 10.1111/phpp.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
AIM Lithospermum erythrorhizon and Pueraria lobata exhibit promising potential as cosmetic additives for mitigating skin barrier impairment induced by photoaging. Despite their potential, the precise mechanisms underlying their protective and ameliorative effects remain elusive. This study sought to assess the reparative properties of Lithospermum erythrorhizon and Pueraria lobata extracts (LP) on UVB-irradiated human skin keratinocytes (HaCaT cells) and explore the therapeutic potential of LP as a skin barrier protection agent. MATERIALS AND METHODS Antioxidant activities were gauged through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and reactive oxygen species (ROS) assays. The expression levels of skin barrier-related markers, encompassing metalloproteinases (MMPs) and hyaluronidase (HYAL) were scrutinized using enzyme-linked immunosorbent assay (ELISA), reverse transcriptase (RT)-PCR, and Western blotting, with a particular focus on the involvement of the transforming growth factor (TGF)-β/Smad and nuclear factor-κB (NF-κB) signaling pathways. RESULTS The study revealed that LP effectively scavenges free radicals, diminishes ROS production in a dose-dependent manner, and significantly attenuates UVB-induced expression of MMP-1 and MMP-3 through modulation of the hyaluronan synthase (HAS)2/HYAL1 signaling axis in UVB-irradiated HaCaT cells. Additionally, LP demonstrated enhanced TGF-β signaling activation, fostering procollagen type I synthesis, and concurrently exhibited mitogen-activated protein kinases (MAPK)/NF-κB signaling inactivation, thereby mitigating pro-inflammatory cytokine release and alleviating UVB-induced cellular damage. CONCLUSION In conclusion, the observed protective effects of LP on skin cellular constituents highlight its substantial biological potential for shielding against UVB-induced skin photoaging, positioning it as a promising candidate for both pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Sungjin Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sarang Oh
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sejig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Wonmi Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Chang Shik Yin
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
9
|
Hu H, Wang T, Wei Y, Xu Z, Cao S, Fu L, Xu H, Mao X, Huang L. Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae Thomsonii Radix. FRONTIERS IN PLANT SCIENCE 2023; 14:1271320. [PMID: 37954990 PMCID: PMC10634472 DOI: 10.3389/fpls.2023.1271320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Accurate assessment of isoflavone and starch content in Puerariae Thomsonii Radix (PTR) is crucial for ensuring its quality. However, conventional measurement methods often suffer from time-consuming and labor-intensive procedures. In this study, we propose an innovative and efficient approach that harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein) and starch in PTR. Specifically, we develop a one-dimensional convolutional neural network (1DCNN) model and compare its predictive performance with traditional methods, including partial least squares regression (PLSR), support vector regression (SVR), and CatBoost. To optimize the prediction process, we employ various spectral preprocessing techniques and wavelength selection algorithms. Experimental results unequivocally demonstrate the superior performance of the DL model, achieving exceptional performance with mean coefficient of determination (R2) values surpassing 0.9 for all components. This research underscores the potential of integrating HSI technology with DL methods, thereby establishing the feasibility of HSI as an efficient and non-destructive tool for predicting the content of isoflavones and starch in PTR. Moreover, this methodology holds great promise for enhancing efficiency in quality control within the food industry.
Collapse
Affiliation(s)
- Huiqiang Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yunpeng Wei
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shiyu Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaxing Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaobo Mao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Luqi Huang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang K, Zhang D, Yang Q, Long L, Xie J, Wang Y, Yao Q, Wu F, Liu S. Integrated widely targeted metabolomics and network pharmacology revealed quality disparities between Guizhou and conventional producing areas of Codonopsis Radix. Front Nutr 2023; 10:1271817. [PMID: 37915621 PMCID: PMC10616484 DOI: 10.3389/fnut.2023.1271817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction With the internationalization of traditional Chinese medicine, the demand for medicinal and edible Codonopsis Radix (CR) has increased, and its medicinal resources have attracted attention. CR is a well-known traditional Chinese medicine with a long pharmaceutical and edible history. The Guizhou province in China has abundant CR resources, but in the absence of systematic studies on species identification and chemical compositions, the capacity of the capacity of the province to CR resource has not been fully utilized. Methodology We used plant morphology and DNA barcoding techniques to identify Luodang (LD) and Weidang (WD) species. To investigate the differences in metabolites between LD and WD, as well as three Chinese Pharmacopeia CRs, and to predict pharmacological mechanisms of action for the dominant differential metabolites, we utilized widely targeted metabolomics and network pharmacology. The results also revealed the material basis for the excellent food properties of both LD and WD. Results The plant traits and DNA barcoding molecular identification results indicated that Luodang and Weidang from Guizhou were Codonopsis tangshen and Codonopsis pilosula, respectively. Widely targeted metabolomics analysis revealed that a total of 1,116 metabolites from 14 categories, including phenolic acids, lipids, flavonoids, were found in five CRs and shared 1,054 (94.4%) metabolites. LD and WD each contained 3 and 10 dominant differential metabolites, respectively, which were primarily flavonoids and amino acids. Amino acids, phenolic acids, and organic acids play important roles in their excellent food attributes. In CR, eight dominant differential metabolites were discovered for the first time, including isoorientin-7-O-(6″-feruloyl) glucoside, N-formyl-L-methionine, and cyclo (Phe-Glu), among others. Network pharmacology analyses showed that, in LD, dominant differential metabolites were closely related to anti-tumor, cardiovascular disease improvement, nervous system protection, and metabolic disease treatment, whereas in WD, they were closely related to nervous system protection and cardiovascular disease improvement. Conclusion The species of LD and WD were included in the Chinese Pharmacopeia, and their metabolite profiles were remarkably similar to CR from traditional producing areas. Therefore, LD and WD can be used and promoted medicinally as CR, and they have potential value for new drug development. This study enriched the database of CR compounds and provided a reference for quality control, resource development, and new drug development of CR.
Collapse
Affiliation(s)
- Kaixian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Delin Zhang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingfang Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Langtao Long
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yong Wang
- Guizhou Medical and Health Industry Research Institute, Zunyi, China
| | - Qiuyang Yao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Guizhou Medical and Health Industry Research Institute, Zunyi, China
| |
Collapse
|
11
|
Kato-Noguchi H. The Impact and Invasive Mechanisms of Pueraria montana var. lobata, One of the World's Worst Alien Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3066. [PMID: 37687313 PMCID: PMC10490251 DOI: 10.3390/plants12173066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Pueraria montana var. lobata is native to East Asia, and was introduced to many countries due to its potential for multiple uses. This species escaped under the management conditions soon after its introduction, and became a harmful weed species. This species has been listed in the top 100 of the world's worst invasive alien species. P. montana stands expand quickly and threaten the native flora and fauna including microbiota. This species affects the concentration of carbon and nitrogen in soil and aquatic environments, and increases the amount of pollutants in the local atmosphere. Its infestation also causes serious economic losses on forestry and agriculture. Its characteristics of fast growth, thick canopy structure, enormous vegetative reproduction, and adaptative ability to the various environmental conditions may contribute to the invasiveness and naturalization of this species. The characteristics of P. montana regarding their defense functions against their natural enemies and pathogens, and allelopathy may also contribute to the invasiveness of this species. Potential allelochemicals such as xanthoxins, p-coumaric acid, caffeic acid, methyl caffeate and daidzein, and two isoflavones with anti-virus activity were identified in this species. In addition, fewer herbivore insects were found in the introduced ranges. These characteristics of P. montana may be involved in the invasive mechanisms of the species. This is the first review article focusing on the invasive mechanisms of this species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
12
|
Zhou Y, Shang XH, Xiao L, Wu ZD, Cao S, Yan HB. Comparative plastomes of Pueraria montana var. lobata (Leguminosae: Phaseoleae) and closely related taxa: insights into phylogenomic implications and evolutionary divergence. BMC Genomics 2023; 24:299. [PMID: 37268915 DOI: 10.1186/s12864-023-09356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/05/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Pueraria montana var. lobata (kudzu) is an important food and medicinal crop in Asia. However, the phylogenetic relationships between Pueraria montana var. lobata and the other two varieties (P. montana var. thomsonii and P. montana var. montana) remain debated. Although there is increasing evidence showing that P. montana var. lobata adapts to various environments and is an invasive species in America, few studies have systematically investigated the role of the phylogenetic relationships and evolutionary patterns of plastomes between P. montana var. lobata and its closely related taxa. RESULTS 26 newly sequenced chloroplast genomes of Pueraria accessions resulted in assembled plastomes with sizes ranging from 153,360 bp to 153,551 bp. Each chloroplast genome contained 130 genes, including eight rRNA genes, 37 tRNA genes, and 85 protein-coding genes. For 24 newly sequenced accessions of these three varieties of P. montana, we detected three genes and ten noncoding regions with higher nucleotide diversity (π). After incorporated publically available chloroplast genomes of Pueraria and other legumes, 47 chloroplast genomes were used to construct phylogenetic trees, including seven P. montana var. lobata, 14 P. montana var. thomsonii and six P. montana var. montana. Phylogenetic analysis revealed that P. montana var. lobata and P. montana var. thomsonii formed a clade, while all sampled P. montana var. montana formed another cluster based on cp genomes, LSC, SSC and protein-coding genes. Twenty-six amino acid residues were identified under positive selection with the site model. We also detected six genes (accD, ndhB, ndhC, rpl2, rpoC2, and rps2) that account for among-site variation in selective constraint under the clade model between accessions of the Pueraria montana var. lobata clade and the Pueraria montana var. montana clade. CONCLUSION Our data provide novel comparative plastid genomic insights into conservative gene content and structure of cp genomes pertaining to P. montana var. lobata and the other two varieties, and reveal an important phylogenetic clue and plastid divergence among related taxa of P. montana come from loci that own moderate variation and underwent modest selection.
Collapse
Affiliation(s)
- Yun Zhou
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao-Hong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Zheng-Dan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Hua-Bing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
13
|
Guo N, Fang Z, Zang Q, Yang Y, Nan T, Zhao Y, Huang L. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116546. [PMID: 37121451 DOI: 10.1016/j.jep.2023.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE P. lobata and P. thomsonii are medicinal plants with similar pharmacological functions but different therapeutic effects. A novel method is presented herein to investigate metabolites in terms of their distribution and qualification, quantification is necessary to elucidate the different therapeutic effects of the two Puerariae species. AIM OF THE STUDY The aim of the present study was to perform spatially resolved metabolomics combined with bioactivity analyses to systematically compare the metabolite differences in P. lobata and P. thomsonii by distribution, qualification, quantification, and biological activity to evaluate their pharmacological properties. MATERIALS AND METHODS Air flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was performed to characterize the differences in the metabolite distributions of P. lobata and P. thomsonii. Further qualitative and quantitative analyses of the differential metabolites were performed using liquid chromatography-mass spectrometry (LC-MS). Biological activities correlated with the differences in the metabolites were validated by MTT assays. RESULTS Some metabolites showed complementary distributions of the phloem and xylem in the two species, saccharide, vitamin, and inosine levels were higher in the phloem of P. thomsonii but higher in the xylem of P. lobata. The 3'-hydroxyl puerarin level was higher in the xylem of P. thomsonii but higher in the phloem of P. lobata. Qualitative and quantitative analyses of the metabolites revealed a total of 52 key differential metabolites. MTT assays showed that daidzein, daidzin, puerarin, ononin, genistin, formononetin, 3'-hydroxy puerarin, 3'-methoxy puerarin, mirificin, and 3'-methoxy daidzin exerted protective effects on H9c2 cells against hypoxia/reoxygenation injury. P. lobata extracts exhibited a significantly better protective efficacy than P. thomsonii extracts. CONCLUSIONS In this study, AFADESI-MSI combined with LC-MS and biological activities comprehensively elucidated metabolite differences in the distribution, qualification, quantification, and pharmacological properties of P. lobata and P. thomsonii. The results of this study could provide a novel strategy for species identification and quality assessment of similar Chinese herbal medicines.
Collapse
Affiliation(s)
- Na Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yiqing Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Tiegui Nan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuping Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Xi C, Zhang M, Li B, Meng X, Xu S, Du H, Wang X, Xu J, Ke H, Cui Y, Qu F. Metabolomics of the anti-inflammatory effect of Pueraria lobata and Pueraria lobata var. Thomsonii in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116144. [PMID: 36649849 DOI: 10.1016/j.jep.2023.116144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata (Willd.) Ohwi and Pueraria lobata var. Thomsonii (Benth.) Maesen are essential medicinal and edible homologous plants widely cultivated in Asian countries. Therefore, P. lobata and P. thomsonii are widely used in the food, health products and pharmaceutical industries and have significant domestic and international market potential and research value. P. lobata and P. thomsonii have pharmacological effects in the clinic, such as antipyretic, analgesic, anti-inflammatory and antioxidant effects. These plants are commonly used in the treatment of inflammatory diseases and other related diseases. However, the potential mechanisms of the anti-inflammatory effects of P. lobata and P. thomsonii have not been elucidated. AIM OF THE STUDY This study aimed to confirm the anti-inflammatory effects of P. lobata and P. thomsonii on inflammatory model diseases and to investigate the mechanism of their anti-inflammatory effects from the perspective of plasma metabolomics. MATERIALS AND METHODS First, P. lobata and P. thomsonii were identified by high‒performance liquid chromatography (HPLC). Second, we established the following three inflammation models: an acute inflammation model of auricular swelling in mice induced by xylene, an acute inflammation model of foot swelling in rats induced by carrageenan gum, and a chronic inflammation model of cotton ball granuloma in rats. Then we examined the weight and swelling rate of auricular swelling in mice; the residence time, contact area, and mean contact pressure in rats on the gait meter; and the weight of granulomas in rats and the content of IL-1β and TNF-α in plasma to investigate the anti-inflammatory pharmacodynamics of P. lobata and P. thomsonii. Third, we used LC‒MS‒based plasma metabolomics techniques to obtain potential biomarkers of P. lobata and P. thomsonii related to inflammation. Then, the potential biomarkers were enriched by MetaboAnalyst and KEGG metabolomics analysis tools to obtain metabolic pathways related to inflammation. Finally, we tested the indicators of COX-2, 5-LOX, GSH, GSSG and γ⁃GCL in rat plasma from the granuloma model by enzyme-linked immunosorbent assays (ELISAs) to verify the inflammation-related metabolic pathway. RESULTS The experimental results showed that P. lobata and P. thomsonii could reduce the swollen weight and swelling rate of the auricle in mice, and could increase the residence time, contact area and mean contact pressure in rats on the gait meter. Moreover, P. lobata and P. thomsonii could inhibit the growth of granulomas and reduce the content of IL-1β and TNF-α in plasma in rats. The above results preliminarily verified that P. lobata and P. thomsonii have different anti-inflammatory effects. We identified eighteen plasma biomarkers associated with P. lobata and sixteen plasma biomarkers related to P. thomsonii in regulating inflammation by a plasma metabolomics analysis. The following two major metabolic pathways were further screened and enriched: arachidonic acid metabolism and glutathione metabolism. Then we noted that P. lobata and P. thomsonii could reduce the COX-2, 5-LOX and GSSG levels and increase the GSH, GSH/GSSG and γ⁃GCL levels based on the ELISA results, which demonstrated that P. lobata and P. thomsonii affect the anti-inflammatory mechanism through arachidonic acid metabolism and glutathione metabolism. CONCLUSIONS The results of this study further elucidate the anti-inflammatory mechanism of action of P. lobata and P. thomsonii, providing a scientific basis for developing new drugs for the treatment of inflammation-related diseases and laying a foundation for the development of herbal resources, such as P. lobata and P. thomsonii.
Collapse
Affiliation(s)
- Chao Xi
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Mingyue Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Bingtao Li
- Research Center for Differentiation and Development of Basic Theories of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xiaowei Meng
- Key Laboratory of Jiangxi University of Chinese Medicine, Ministry of Education, Nanchang, Jiangxi, 330004, China
| | - Shangcheng Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Hong Du
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xinyi Wang
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Jingping Xu
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Hong Ke
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yanru Cui
- School of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Fei Qu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
15
|
Fu M, Jahan MS, Tang K, Jiang S, Guo J, Luo S, Luo W, Li G. Comparative analysis of the medicinal and nutritional components of different varieties of Pueraria thomsonii and Pueraria lobata. FRONTIERS IN PLANT SCIENCE 2023; 14:1115782. [PMID: 37063196 PMCID: PMC10090398 DOI: 10.3389/fpls.2023.1115782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Pueraria thomsonii and Pueraria lobata are important medicinal plants with unique chemical compositions that are widely used in traditional Chinese medicine. To compare the nutritional and medicinal profiles of these two species, we analyzed the flavonoid, dietary fiber, total starch, and crude protein contents of one P. lobata and three P. thomsonii varieties using ultra-performance liquid chromatography-tandem mass spectrometry, enzyme weight, acid hydrolysis, and Kjeldahl methods. Furthermore, we used principal component analysis and hierarchical clustering heatmap analysis to separate the data obtained from the P. thomsonii and P. lobata samples. We detected 279 flavonoid compounds in the two Pueraria species, including 90 isoflavones and 78 flavonoids. A large proportion of isoflavones and flavonoids were more abundant in P. lobata than in P. thomsonii. The total starch content was significantly higher in P. thomsonii than in P. lobata. By contrast, the soluble dietary fiber, insoluble dietary fiber, and crude protein contents were substantially lower in P. thomsonii than in P. lobata. Taken together, our results demonstrate that P. lobata is better suited for use as a medicine, whereas P. thomsonii is better suited as an edible food, and provide a theoretical foundation for developing P. thomsonii and P. lobata germplasm resources.
Collapse
Affiliation(s)
- Mei Fu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mohammad Shah Jahan
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kang Tang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shizheng Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shanwei Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
16
|
Liu J, Zhang C, Jiang M, Ni Y, Xu Y, Wu W, Huang L, Newmaster SG, Kole C, Wu B, Liu C. Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. PLANTA 2023; 257:72. [PMID: 36862222 DOI: 10.1007/s00425-023-04104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We identified circRNAs in the Cannabis sativa L. genome and examined their association with 28 cannabinoids in three tissues of C. sativa. Nine circRNAs are potentially involved in the biosynthesis of six cannabinoids. Cannabis sativa L. has been widely used in the production of medicine, textiles, and food for over 2500 years. The main bioactive compounds in C. sativa are cannabinoids, which have multiple important pharmacological actions. Circular RNAs (circRNAs) play essential roles in growth and development, stress resistance, and the biosynthesis of secondary metabolites. However, the circRNAs in C. sativa remain unknown. In this study, to explore the role of circRNAs in cannabinoid biosynthesis, we performed RNA-Seq and metabolomics analysis on the leaves, roots, and stems of C. sativa. We identified 741 overlapping circRNAs by three tools, of which 717, 16, and 8 circRNAs were derived from exonic, intronic, and intergenic, respectively. Functional enrichment analysis indicated that the parental genes (PGs) of circRNAs were enriched in many processes related to biological stress responses. We found that most of the circRNAs showed tissue-specific expression and 65 circRNAs were significantly correlated with their PGs (P < 0.05, |r|≥ 0.5). We also determined 28 cannabinoids by High-performance liquid chromatography-ESI-triple quadrupole-linear ion trap mass spectrometry. Ten circRNAs, including ciR0159, ciR0212, ciR0153, ciR0149, ciR0016, ciR0044, ciR0022, ciR0381, ciR0006, and ciR0025 were found to be associated with six cannabinoids by weighted gene co-expression network analysis. Twenty-nine of 53 candidate circRNAs, including 9 cannabinoids related were validated successfully using PCR amplification and Sanger sequencing. Taken together, all these results would help to enhance our acknowledge of the regulation of circRNAs, and lay the foundation for breeding new C. sativa cultivars with high cannabinoids through manipulating circRNAs.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yicen Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, People's Republic of China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Chittaranjan Kole
- International Climate Resilient Crop Genomics Consortium and International Phytomedomics and Nutriomics Consortium, Kolkata, 700094, India
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Bai YF, Yue ZL, Wang YN, Li YD, Li C, Liu XT, Shi RH, Huo NN, Li DD, Gao S, Han X. Synergistic effect of polysaccharides and flavonoids on lipid and gut microbiota in hyperlipidemic rats. Food Funct 2023; 14:921-933. [PMID: 36537876 DOI: 10.1039/d2fo03031d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hyperlipidemia is a global health risk factor, and its development is closely related to the absorption and metabolism of lipids in the intestine. In this study, the Auricularia auricula polysaccharide, the Tremella polysaccharide, and hawthorn flavonoids were mixed by equal weight (HDC), and then its effect on the intervention in the intestine and blood lipids of hyperlipidemic rats on a high-fat diet (HFD) was investigated. The results revealed that HDC significantly inhibited the development of hyperlipidemia and reduced lipid levels and fat accumulation. In addition, HDC improved the edema deformation of intestinal epithelial cells, impaired the intestinal barrier induced by HFD, and improved the antioxidant capacity of the intestine. HDC showed a significant synergistic effect. Analysis of the gut microbiota by 16s rRNA gene sequencing showed that HDC reduced the ratio of Bacteroidetes/Firmicutes and the relative abundance of actinomycetes. At the genus level, the relative abundance of Lactobacillus, Rumincococcaceae-UCG-14, and Muribaculaceae was increased and the relative abundance of Allobaculum, Corynebacterium-1, Blautia, and Turicibucter was decreased. Intestinal lipidomics showed that HDC reduced the levels of DGDG, LPE, PG, phSM, PIP2, SoG1, and SM in the intestine of HFD rats, although there were no significant differences in LPE, PG, and phSM. 42 HDC-acting lipid biomarkers were screened. In conclusion, these findings support the potential of HDC intervention to prevent hyperlipidemia by regulating gut microbiota and lipid absorption and metabolism in the intestine.
Collapse
Affiliation(s)
- Yun-Fei Bai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhi-Liang Yue
- Hebei Provincial Station of Veterinary Drug and Feed, Shijiazhuang, China
| | - Ya-Nan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yan-Dong Li
- Laboratory of Veterinary Drug Residues, Hebei Institute of Veterinary Drugs Control, Shijiazhuang, PR China
| | - Chong Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xin-Tong Liu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ruo-Han Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ning-Ning Huo
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dan-Dan Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shan Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
18
|
Sun Y, Zhou M, Luo L, Pan H, Zhang Q, Yu C. Metabolic profiles, bioactive compounds and antioxidant activity of rosehips from Xinjiang, China. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Shao M, Chen Y, Gong Q, Miao S, Li C, Sun Y, Qin D, Guo X, Yan X, Cheng P, Yu G. Biocontrol endophytes Bacillus subtilis R31 influence the quality, transcriptome and metabolome of sweet corn. PeerJ 2023; 11:e14967. [PMID: 36883062 PMCID: PMC9985898 DOI: 10.7717/peerj.14967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
During colonization of soil and plants, biocontrol bacteria can effectively regulate the physiological metabolism of plants and induce disease resistance. To illustrate the influence of Bacillus subtilis R31 on the quality, transcriptome and metabolome of sweet corn, field studies were conducted at a corn experimental base in Zhuhai City. The results show that, after application of B. subtilis R31, sweet corn was more fruitful, with a 18.3 cm ear length, 5.0 cm ear diameter, 0.4 bald head, 403.9 g fresh weight of single bud, 272.0 g net weight of single ear, and 16.5 kernels sweetness. Combined transcriptomic and metabolomic analyses indicate that differentially expressed genes related to plant-pathogen interactions, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and flavonoid biosynthesis were significantly enriched. Moreover, the 110 upregulated DAMs were mainly involved in the flavonoid biosynthesis and flavone and flavonol biosynthesis pathways. Our study provides a foundation for investigating the molecular mechanisms by which biocontrol bacteria enhance crop nutrition and taste through biological means or genetic engineering at the molecular level.
Collapse
Affiliation(s)
- Mingwei Shao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Yanhong Chen
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Qingyou Gong
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Shuang Miao
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Yunhao Sun
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Di Qin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Xiaojian Guo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Xun Yan
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Ping Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| | - Guohui Yu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guanghzou, China.,Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Guangdong, China
| |
Collapse
|
20
|
Lei L, Yuan X, Fu K, Chen Y, Lu Y, Shou N, Wu D, Chen X, Shi J, Zhang M, Chen Z, Shi Z. Pseudotargeted metabolomics revealed the adaptive mechanism of Draba oreades Schrenk at high altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:1052640. [PMID: 36570906 PMCID: PMC9784223 DOI: 10.3389/fpls.2022.1052640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Strong ultraviolet radiation and low temperature environment on Gangshika Mountain, located in the eastern part of the Qilian Mountains in Qinghai Province, can force plants to produce some special secondary metabolites for resisting severe environmental stress. However, the adaptive mechanism of Draba oreades Schrenk at high altitude are still unclear. In the current study, Draba oreades Schrenk from the Gangshika Mountain at altitudes of 3800 m, 4000 m and 4200 m were collected for comprehensive metabolic evaluation using pseudotargeted metabolomics method. Through KEGG pathway enrichment analysis, we found that phenylpropanoid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism related to the biosynthesis of flavonoids were up-regulated in the high-altitude group, which may enhance the environmental adaptability to strong ultraviolet intensity and low temperature stress in high altitude areas. By TopFc20 distribution diagram, the content of flavonoids gradually increased with the elevation of altitude, mainly including apigenin, luteolin, quercetin, hesperidin, kaempferol and their derivatives. Based on the random forest model, 10 important metabolites were identified as potential biomarkers. L-phenylalanine, L-histidine, naringenin-7-O-Rutinoside-4'-O-glucoside and apigenin related to the flavonoids biosynthesis and plant disease resistance were increased with the elevation of altitude. This study provided important insights for the adaptive mechanism of Draba oreades Schrenk at high altitude by pseudotargeted metabolomics.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yijun Lu
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian Shi
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Minjuan Zhang
- Metabolomics Detection Department, Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Zhe Chen
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Cheng H, Huang X, Wu S, Wang S, Rao S, Li L, Cheng S, Li L. Chromosome-Level Genome Assembly and Multi-Omics Dataset Provide Insights into Isoflavone and Puerarin Biosynthesis in Pueraria lobata (Wild.) Ohwi. Biomolecules 2022; 12:biom12121731. [PMID: 36551157 PMCID: PMC9775041 DOI: 10.3390/biom12121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Pueraria lobata (wild.) Ohwi is a leguminous plant and one of the traditional Chinese herbal medicines. Its puerarin extract is widely used in the pharmaceutical industry. This study reported a chromosome-level genome assembly for P. lobata and its characteristics. The genome size was ~939.2 Mb, with a contig N50 of 29.51 Mbp. Approximately 97.82% of the assembled sequences were represented by 11 pseudochromosomes. We identified that the repetitive sequences accounted for 63.50% of the P. lobata genome. A total of 33,171 coding genes were predicted, of which 97.34% could predict the function. Compared with other species, P. lobata had 757 species-specific gene families, including 1874 genes. The genome evolution analysis revealed that P. lobata was most closely related to Glycine max and underwent two whole-genome duplication (WGD) events. One was in a gamma event shared by the core dicotyledons at around 65 million years ago, and another was in the common ancestor shared by legume species at around 25 million years ago. The collinearity analysis showed that 61.45% of the genes (54,579 gene pairs) in G. max and P. lobata had collinearity. In this study, six unique PlUGT43 homologous genes were retrieved from the genome of P. lobata, and no 2-hydroxyisoflavanone 8-C-glucoside was found in the metabolites. This also revealed that the puerarin synthesis was mainly from the glycation of daidzein. The combined transcriptome and metabolome analysis suggested that two bHLHs, six MYBs and four WRKYs were involved in the expression regulation of puerarin synthesis structural genes. The genetic information obtained in this study provided novel insights into the biological evolution of P. lobata and leguminous species, and it laid the foundation for further exploring the regulatory mechanism of puerarin synthesis.
Collapse
Affiliation(s)
- Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Xiaohua Huang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
- Correspondence: ; Tel.: +86-173-7156-9920
| |
Collapse
|
22
|
Yang L, Yang Y, Huang L, Cui X, Liu Y. From single- to multi-omics: future research trends in medicinal plants. Brief Bioinform 2022; 24:6840072. [PMID: 36416120 PMCID: PMC9851310 DOI: 10.1093/bib/bbac485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Medicinal plants are the main source of natural metabolites with specialised pharmacological activities and have been widely examined by plant researchers. Numerous omics studies of medicinal plants have been performed to identify molecular markers of species and functional genes controlling key biological traits, as well as to understand biosynthetic pathways of bioactive metabolites and the regulatory mechanisms of environmental responses. Omics technologies have been widely applied to medicinal plants, including as taxonomics, transcriptomics, metabolomics, proteomics, genomics, pangenomics, epigenomics and mutagenomics. However, because of the complex biological regulation network, single omics usually fail to explain the specific biological phenomena. In recent years, reports of integrated multi-omics studies of medicinal plants have increased. Until now, there have few assessments of recent developments and upcoming trends in omics studies of medicinal plants. We highlight recent developments in omics research of medicinal plants, summarise the typical bioinformatics resources available for analysing omics datasets, and discuss related future directions and challenges. This information facilitates further studies of medicinal plants, refinement of current approaches and leads to new ideas.
Collapse
Affiliation(s)
- Lifang Yang
- Kunming University of Science and Technology, China
| | - Ye Yang
- Kunming University of Science and Technology, China
| | - Luqi Huang
- the academician of the Chinese Academy of Engineering, studies the development of traditional Chinese medicine, Chinese Academy of Chinese Medical Sciences, China
| | - Xiuming Cui
- Corresponding authors. X. M. Cui, Yunnan Provincial Key Laboratory of Panax notoginseng, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail: ; Y. Liu, Yunnan Provincial Key Laboratory of Panax notoginseng, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail:
| | - Yuan Liu
- Corresponding authors. X. M. Cui, Yunnan Provincial Key Laboratory of Panax notoginseng, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail: ; Y. Liu, Yunnan Provincial Key Laboratory of Panax notoginseng, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail:
| |
Collapse
|
23
|
Pueraria lobata Potentially Treating Prostate Cancer on Single-Cell Level by Network Pharmacology and AutoDock: Clinical Findings and Drug Targets. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3758219. [DOI: 10.1155/2022/3758219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Background. Prostate cancer (PCa) is one of the common malignant tumors of the urological system, and metastasis often occurs in advanced stages. Chemotherapy is an effective treatment for advanced PCa but has limitations in terms of efficacy, side effects, multidrug resistance, and high treatment costs. Therefore, new treatment modalities for PCa need to be explored and improved. Methods. R language and GEO database were used to obtain differentially expressed genes for PCa single-cell sequencing. TCMSP, STITCH, SwissTargetPrediction, and PubChem databases were used to obtain the active ingredients and targets of Pueraria lobata (PL). Next, Cytoscape software was used to draw the interactive network diagram of “drug–active component–target pathway.” Based on the STRING database, the protein–protein interaction network was constructed. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were applied for the genes. Molecular docking was used to visualize the drug–target interaction via AutoDock Vina and PyMOL. Finally, prognosis-related genes were found by survival analysis, and Protein Atlas was used for validation. Results. Four active components and 31 target genes were obtained through the regulatory network of PL. Functional enrichment analysis showed that PL played a pharmacological role in the treatment of PCa by regulating the metabolic processes of reactive oxygen species, response to steroid hormones, and oxidative stress as well as IL-17 signaling pathway, PCa, and estrogen signaling pathway. Single-cell data showed that AR, MIF, HSP90B1, and MAOA genes were highly expressed, and molecular docking analysis showed that representative components had a strong affinity with receptor proteins. Survival analysis found that APOE, CA2, IGFBP3, MIF, F10, and NR3C1 could predict progression-free survival (PFS), and some of them could be validated in PCa. Conclusion. In this paper, a drug–active ingredient–target pathway network of PL at the single-cell level of PCa was constructed, and the findings revealed that it acted on genes such as AR, MIF, HSP90B1, and MAOA to regulate several biological processes and related signaling pathways to interfere with the occurrence and development of PCa. APOE, CA2, IGFBP3, MIF, F10, and NR3C1 were also important as target genes in predicting PFS.
Collapse
|
24
|
Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-Acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol 2022; 224:380-395. [DOI: 10.1016/j.ijbiomac.2022.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
25
|
Zhou L, Cai Y, Yang L, Zou Z, Zhu J, Zhang Y. Comparative Metabolomics Analysis of Stigmas and Petals in Chinese Saffron ( Crocus sativus) by Widely Targeted Metabolomics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11182427. [PMID: 36145828 PMCID: PMC9502368 DOI: 10.3390/plants11182427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
The dried stigmas of Crocus sativus, commonly known as saffron, are consumed largely worldwide because it is highly valuable in foods and has biological activities beneficial for health. Saffron has important economic and medicinal value, and thus, its planting area and global production are increasing. Petals, which are a by-product of the stigmas, have not been fully utilized at present. We compared the metabolites between the stigmas and petals of C. sativus using a non-targeted metabolomics method. In total, over 800 metabolites were detected and categorized into 35 classes, including alkaloids, flavonoids, amino acids and derivatives, phenols and phenol esters, phenylpropanoids, fatty acyls, steroids and steroid derivatives, vitamins, and other metabolites. The metabolite composition in the petals and stigmas was basically similar. The results of the study showed that the petals contained flavonoids, alkaloids, coumarins, and other medicinal components, as well as amino acids, carbohydrates, vitamins, and other nutritional components. A principal components analysis (PCA) and an orthogonal partial least-squares discriminant analysis (OPLS-DA) were performed to screen the different metabolic components. A total of 339 differential metabolites were identified, with 55 metabolites up-regulated and 284 down-regulated. The up-regulated metabolites, including rutin, delphinidin-3-O-glucoside, isoquercitrin, syringaresinol-di-O-glucoside, dihydrorobinetin, quercetin, and gallocatechin, were detected in the petals. The down-regulated metabolites were mainly glucofrangulin B, acetovanillone, daidzein, guaiazulene, hypaphorine, indolin-2-one, and pseudouridine. KEGG annotation and enrichment analyses of the differential metabolites revealed that flavonoid biosynthesis, amino acids biosynthesis, and arginine and proline metabolism were the main differentially regulated pathways. In conclusion, the petals of C. sativus are valuable for medicine and foods and have potential utility in multiple areas such as the natural spice, cosmetic, health drink, and natural health product industries.
Collapse
Affiliation(s)
- Lin Zhou
- Shanghai Key Laboratory of Protected Horticulthural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Youming Cai
- Shanghai Key Laboratory of Protected Horticulthural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Liuyan Yang
- Shanghai Key Laboratory of Protected Horticulthural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Jiao Zhu
- Shanghai Key Laboratory of Protected Horticulthural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yongchun Zhang
- Shanghai Key Laboratory of Protected Horticulthural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- Correspondence: ; Tel.: +86-18918162408
| |
Collapse
|
26
|
Zhang C, Jiang Y, Liu C, Shi L, Li J, Zeng Y, Guo L, Wang S. Identification of Medicinal Compounds of Fagopyri Dibotryis Rhizome from Different Origins and Its Varieties Using UPLC-MS/MS-Based Metabolomics. Metabolites 2022; 12:metabo12090790. [PMID: 36144195 PMCID: PMC9503457 DOI: 10.3390/metabo12090790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fagopyrum dibotrys, being native to southwest China, is widely distributed in Yunnan, Guizhou Provinces and Chongqing City. However, the quality of medicinal materials growing in different origins varies greatly, and cannot meet the market demand for high-quality F. dibotrys. In this study, 648 metabolites were identified, and phenolic compounds of F. dibotrys from different origins were clearly separated by principal component analysis (PCA). Our results suggested that the medicinal differences of F. dibotrys from different origins can be elucidated via the variations in the abundance of the phenolic and flavonoid compounds. We found that the epicatechin, total flavonoids and total tannin content in Yunnan Qujing (YQ) and Yunnan Kunming (YK) were higher than those in Chongqing Shizhu (CS), Chongqing Fuling (CF) and Guizhou Bijie (GB), suggesting that Yunnan Province can be considered as one of the areas that produce high-quality medicinal materials. Additionally, 1,6-di-O-galloyl-β-D-glucose, 2,3-di-O-galloyl-D-glucose and gallic acid could be used as ideal marker compounds for the quality control of F. dibotrys from different origins caused by metabolites, and the F. dibotrys planted in Yunnan Province is well worth exploiting.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Jiang
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linyuan Shi
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jintong Li
- China National Traditional Chinese Medicine, Co., Ltd., Beijing 100191, China
| | - Yan Zeng
- China National Traditional Chinese Medicine, Co., Ltd., Beijing 100191, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (L.G.); (S.W.)
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, China
- Correspondence: (L.G.); (S.W.)
| |
Collapse
|
27
|
Mo C, Wu Z, Shang X, Shi P, Wei M, Wang H, Xiao L, Cao S, Lu L, Zeng W, Yan H, Kong Q. Chromosome-level and graphic genomes provide insights into metabolism of bioactive metabolites and cold-adaption of Pueraria lobata var. montana. DNA Res 2022; 29:6663990. [PMID: 35961033 PMCID: PMC9397507 DOI: 10.1093/dnares/dsac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.
Collapse
Affiliation(s)
| | | | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Pingli Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Minghua Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huabing Yan
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| | - Qiusheng Kong
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| |
Collapse
|