1
|
Souihi M, Kouki H, Amri I, Maalej I, Souissi A, Trabelsi I, Dhaouadi F, Hamrouni L, Mabrouk Y. Valorisation of essential oil of Eucalyptus populifolia Desf, Eucalyptus woollsiana and Eucalyptus exserta for agro-industrial purposes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:4137-4149. [PMID: 38595153 DOI: 10.1080/09603123.2024.2338895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Forest species are characterized by their wealth of essential oils (EOs), which play key requested for alternative control methods against weeds, fungi and pests. This study reports the chemical composition and highlight the antioxidant, antifungal and phytotoxic properties of the EOs obtained from Eucalyptus populifolia Desf, Eucalyptus woollsiana and Eucalyptus exserta. The EOs were analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Their antioxidant, antifungal and phytotoxic properties were investigated. All EOs displayed a specific richness in eucalyptol (75.94-7.01%), camphene (6.97-0.4%) globulol (5.20-5.83%) and α-pinene (0.71-12.82 %). EOs isolated from E. populifolia exhibited significant antioxidant activity. Furthermore, all investigated EOs displayed significant antifungal properties against four phytopathogenic fungi belonging to Fusarium genus. The phytotoxic activity against five weeds showed varying effectiveness on seed germination and seedling growth, which exhibited greater effectiveness compared to glyphosate. Eucalyptus EOs have the potential to be used in the formulation of biopesticides.
Collapse
Affiliation(s)
- Mouna Souihi
- Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Ariana, Tunisia
- Doctoral School of Computer Science, Communications, Design, and Environment (STICODE), University Campus of Manouba, Manouba, Tunisia
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Ariana, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Ariana, Tunisia
| | - Ines Maalej
- Laboratory of Biomass Valorisation and Protein Production in Eukaryotes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amir Souissi
- Laboratory of Agricultural Sciences and Techniques, National Institute of Agricultural Research of Tunisia (INRAT), Carthage University, Ariana, Tunisia
| | - Imen Trabelsi
- Laboratory of Agricultural Sciences and Techniques, National Institute of Agricultural Research of Tunisia (INRAT), Carthage University, Ariana, Tunisia
| | - Ferjani Dhaouadi
- Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Ariana, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Research on Rural Engineering, Water, and Forests, Ariana, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology (LR16CNSTN01), National Centre for Nuclear Sciences and Technologies (CNSTN), Ariana, Tunisia
| |
Collapse
|
2
|
Ayed A, Caputo L, De Feo V, Elshafie HS, Fratianni F, Nazzaro F, Hamrouni L, Amri I, Mabrouk Y, Camele I, Polito F. Antimicrobial, anti-enzymatic and antioxidant activities of essential oils from some Tunisian E ucalyptus species. Heliyon 2024; 10:e34518. [PMID: 39113961 PMCID: PMC11303996 DOI: 10.1016/j.heliyon.2024.e34518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti α-amylase and anti α-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.
Collapse
Affiliation(s)
- Amira Ayed
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Sidi Thabet 2020, Tunisia
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | - Filomena Nazzaro
- Institute of Food Science, ISA-CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Khedhri S, Polito F, Caputo L, Khammassi M, Dhaouadi F, Amri I, Hamrouni L, Mabrouk Y, Fratianni F, Nazzaro F, De Feo V. Antimicrobial, Herbicidal and pesticidal potential of Tunisian eucalyptus species: Chemoprofiling and biological evaluation. Heliyon 2024; 10:e29905. [PMID: 38720723 PMCID: PMC11076916 DOI: 10.1016/j.heliyon.2024.e29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The Eucalyptus genus, characterized by its imposing stature and fragrant foliage, has been a source of fascination for humanity over the centuries. The focus of the present investigation was directed towards the essentials oils (EOs) of five Eucalyptus trees cultivated in Tunisia. The GC-MS analysis unveiled unique compositional profiles, a finding substantiated by both Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) conducted on the leaves EOs. These analyses resulted in the formation of discrete HCA clades, delineating 23 significant components. Notably, the percentage of eucalyptol emerged as the pivotal factor demarcating the separation between three distinct groups. The statistical analysis revealed a dose-dependent relationship in both phytotoxicity evaluation and antibacterial activity. The EOs from Eucalyptus loxophleba and E. salubris exhibited the highest phytotoxicity, inhibiting radical elongation and germination of various seeds, especially Sinapis arvensis and Raphanus sativus. The antimicrobial assessment demonstrated significant inhibitory effects of the EOs on bacterial strains, with MIC values spanning from 14 to exceeding 50 mg/ml. The EOs also affected biofilm formation and cellular metabolism, displaying varied efficacy among different Eucalyptus species against some bacterial strains. The EOs exhibited selective inhibition against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase. E. campaspe EO showed the highest AChE activity, while E. loxophleba and E. salubris EOs were most potent toward α-amylase. E. loxophleba EO demonstrated notable activity against α-glucosidase. Overall, these findings provide important data about the diverse biological activities of Eucalyptus EOs, suggesting potential applications in agriculture, medicine, and pharmacy.
Collapse
Affiliation(s)
- Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, 2080, Ariana, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, 2080, Ariana, Tunisia
| | - Ferjani Dhaouadi
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, 2020, Ariana, Tunisia
| | - Ismail Amri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, 2080, Ariana, Tunisia
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, 2020, Ariana, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, 2080, Ariana, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, 2020, Ariana, Tunisia
| | - Florinda Fratianni
- Institute of Food Science, ISA-CNR, via Roma, 64, 83100, Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, ISA-CNR, via Roma, 64, 83100, Avellino, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
- Institute of Food Science, ISA-CNR, via Roma, 64, 83100, Avellino, Italy
| |
Collapse
|
4
|
Polito F, Papaianni M, Woo SL, Malaspina P, Cornara L, De Feo V. Artemisia arborescens (Vaill.) L.: Micromorphology, Essential Oil Composition, and Its Potential as an Alternative Biocontrol Product. PLANTS (BASEL, SWITZERLAND) 2024; 13:825. [PMID: 38592817 PMCID: PMC10974135 DOI: 10.3390/plants13060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Artemisia arborescens is a Mediterranean evergreen shrub, with silver grey-green tomentose leaves and a strong scent. It has various ethnopharmacological uses and its secondary metabolites have demonstrated antimicrobial, antiviral, pharmaceutical, phytotoxic, and insecticidal activities. Different extracts obtained from aerial parts of this species are known for their allelopathic effect, but similar studies on its essential oil (EO) are lacking. Therefore, we carried out a pharmacognostic study, obtaining the characterization of the secretory structures and the EO produced. Trans-thujone and camphor are the main components, followed by aromadendrene, camphene, and 8-cedren-13-ol. EO phytotoxic activity was tested on weed plants (Lolium multiflorum Lam. and Sinapis arvensis L.) and crops (Raphanus sativus L. and Cucumis sativus L.), showing inhibition on both germination and radical growth of the two weeds tested. The effects of the EO against the bacterial plant pathogens Xanthomonas campestris pv. campestris (Gram-) and Pseudomonas syringae pv. tomato (Gram+) was also assayed. The minimum inhibitory concentration (MIC) was observed when it was used undiluted [100% v/v], and growth inhibition when diluted at different doses. The antimicrobial activity was also confirmed by the cellular material release and biofilm formation assays. The overall data show that A. arborescens EO can find application as a potential alternative biocontrol product against weeds and plant pathogens. This goal is particularly important from the perspective of replacing synthetic pesticides with natural products, which safeguard both the environment and the health of consumers.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (F.P.); (V.D.F.)
| | - Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Italy;
| | - Sheridan Lois Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (F.P.); (V.D.F.)
| |
Collapse
|
5
|
Souda B, Andres MF, Elfalleh W, Gonzalez-Coloma A, Saadaoui E. GC-MS profiling, antifeedant, nematicidal and phytotoxic effects of essential oils of two subspecies of Eucalyptus flocktoniae (Maiden) Maiden. Nat Prod Res 2024:1-8. [PMID: 38230510 DOI: 10.1080/14786419.2023.2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
This work presents the biocidal effects and chemical compositions of two essential oils (EOs) obtained by hydrodistillation of Eucalyptus flocktoniae subsp. flocktoniae and E. flocktoniae subsp. hebes. The two subspecies studied had different chemical composition, when analysed by gas chromatography coupled to mass spectrometry with 1,8-cineole (56.98%), trans-pinocarveol (20.38%) and α-pinene (5.86%) being the major components of E. flocktoniae subsp. flocktoniae and spathulenol (25.09%), p-cymene (21.20%), 1,8-cineole (10.74%) and α-pinene (8.93%) are the major components of E. flocktoniae subsp. hebes. These oils were evaluated for their insect antifeedant, nematicidal and phytotoxic activities. The biocidal tests showed that E. flocktoniae subsp. hebes was the most active against Myzus persicae and Rhopalosiphum padi. While, E. flocktoniae subsp. flocktoniae was not antifeedant. None of the investigated EOs were active against both Spodoptera littoralis and Meloidogyne javanica root-knot nematode. Moreover, the EOs extracted from these two subspecies showed a significant phytotoxic effect.
Collapse
Affiliation(s)
- Belaid Souda
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, Tunisia
- National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF, University of Carthage, Tunis, Tunisia
| | | | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes, Tunisia
| | | | - Ezzeddine Saadaoui
- National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF, University of Carthage, Tunis, Tunisia
| |
Collapse
|
6
|
Elkolli H, Elkolli M, Ataya FS, Salem-Bekhit MM, Zahrani SA, Abdelmageed MWM, Ernst B, Benguerba Y. In Vitro and In Silico Activities of E. radiata and E. cinerea as an Enhancer of Antibacterial, Antioxidant, and Anti-Inflammatory Agents. Molecules 2023; 28:7153. [PMID: 37894631 PMCID: PMC10609132 DOI: 10.3390/molecules28207153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of -7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits.
Collapse
Affiliation(s)
- Hayet Elkolli
- Laboratory of Multiphasic Polymeric Materials, Départment of Process Engineering, Faculty of Technology, University Ferhat Abbas of Setif 1, Setif 19000, Algeria;
| | - Meriem Elkolli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif 1, Setif 19000, Algeria;
| | - Farid S. Ataya
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sami Al Zahrani
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mostafa W. M. Abdelmageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Barbara Ernst
- Laboratory of Molecular Recognition and Separation Processes (RePSeM), CNRS, IPHC UMR 7178, University of Strasbourg, ECPM 25 Becquerel Road, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratory of Biopharmacy and Pharmacotechnics (LPBT), University of Ferhat Abbas Setif 1, Setif 19000, Algeria
| |
Collapse
|
7
|
Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, Batish DR. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2916. [PMID: 37631128 PMCID: PMC10458566 DOI: 10.3390/plants12162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.
Collapse
Affiliation(s)
- Ipsa Gupta
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Rishikesh Singh
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India;
| | - Mansi Sharma
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Kamaljit Grewal
- Department of Botany, Khalsa College for Women, Civil Lines, Ludhiana 141001, India;
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Daizy R. Batish
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| |
Collapse
|
8
|
Polito F, Fratianni F, Nazzaro F, Amri I, Kouki H, Khammassi M, Hamrouni L, Malaspina P, Cornara L, Khedhri S, Romano B, Maresca DC, Ianaro A, Ercolano G, De Feo V. Essential Oil Composition, Antioxidant Activity and Leaf Micromorphology of Five Tunisian Eucalyptus Species. Antioxidants (Basel) 2023; 12:antiox12040867. [PMID: 37107241 PMCID: PMC10135225 DOI: 10.3390/antiox12040867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Eucalyptus species have been widely employed in the projects of reforestation in Tunisia. Although their ecological functions are controversial, these plants are indeed important to counteract soil erosion, and represent a fast-growing source of fuelwood and charcoal wood. In the present study, we considered five Eucalyptus species, namely Eucalyptus alba, E. eugenioides, E. fasciculosa, E. robusta, and E. stoatei cultivated in the Tunisian Arboreta. The aim was to carry out the micromorphological and anatomical characterization of the leaves, the extraction and phytochemical profile of the essential oils (EOs), and the evaluation of their biological properties. Four of the EOs showed the prevalence of eucalyptol (1,8-cineole) varying from 64.4 to 95.9%, whereas a-pinene predominated in E. alba EO (54.1%). These EOs showed in vitro antioxidant activity, and reduced the oxidative cellular stress as shown by their activity on reactive oxygen species (ROS) production, and modulation of the expression of antioxidant enzymes, such as glutamate-cysteine ligase (GCL) and heme oxygenase-1 (Hmox-1). Moreover, the EOs inhibited the production of nitric oxide (NO), showing anti-inflammatory activity. The data collected suggest that these EOs may be considered a promising therapeutic strategy for inflammation-based diseases and may represent an additional value for the economy of Tunisia.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | | | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Marwa Khammassi
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Lamia Hamrouni
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Sana Khedhri
- Faculty of Science, Bizerte, Zarzouna 7021, Tunisia
| | - Benedetta Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Daniela Claudia Maresca
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
9
|
Abbaci H, Nabti EH, Al-Bekairi AM, Hagras SAA, Salem-Bekhit MM, Adjaoud A, Alzahrani HA, Bensidhoum L, Alenazy R, Piras A, Falconieri D, Porcedda S, Benguerba Y, Houali K. Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules 2023; 28:molecules28062638. [PMID: 36985610 PMCID: PMC10053293 DOI: 10.3390/molecules28062638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/15/2023] Open
Abstract
Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2–95.5%). The main components were 1,8-cineole (65.6–86.1%), α-terpinyl acetate (2.5–7.6%), o-cymene (3.3–7.5%), and α-terpineol (3.3–3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.
Collapse
Affiliation(s)
- Hocine Abbaci
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - El-hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | | | - Soheir A. A. Hagras
- Department of Clinical Laboratory Sciences, Inaya Medical Colleges, Riyadh 11352, Saudi Arabia
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdenour Adjaoud
- Département des Sciences Biologiques de l’Environnement, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Hayat Ali Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73211, Saudi Arabia
| | - Leila Bensidhoum
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Danilo Falconieri
- Technical Institute “Michele Giua”, Via Montecassino, 09134 Cagliari, Italy
| | - Silvia Porcedda
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
- Correspondence:
| | - Karim Houali
- Laboratoire de Biochimie Appliquée et Biotechnologies (LABAB), Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud MAMMERI de Tizi-Ouzou, Tizi-Ouzou 15000, Algeria
| |
Collapse
|
10
|
Amato G, Caputo L, Francolino R, Martino M, De Feo V, De Martino L. Origanum heracleoticum Essential Oils: Chemical Composition, Phytotoxic and Alpha-Amylase Inhibitory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:866. [PMID: 36840214 PMCID: PMC9959193 DOI: 10.3390/plants12040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Many studies have demonstrated the herbicidal effects of several essential oils and their possible use as substitutes for chemical herbicides. Several enzymes play a very significant role in seed germination: among these, α-amylase could be involved in essential oil phytotoxic processes. The aims of this study were to compare the chemical composition of the essential oils of two ecotypes of O. heracleoticum growing in Cilento (Southern Italy) and to study their possible use as natural herbicide using Raphanus sativus, Sinapis arvensis and Lolium multiflorum seeds. Moreover, a possible inhibitory activity on the α-amylase enzyme extracted from germinating seeds was evaluated as a possible mechanism of action. Both oils, characterized by GC-MS, belonged to a carvacrol chemotype. The alpha-amylase activity was determined using DNSA (dinitrosalicylic acid) assay quantifying the reducing sugar produced. Furthermore, the essential oils demonstrated phytotoxicity at the highest dose tested, and an inhibitory effect on α-amylase, probably correlated with the phytotoxic effects, was registered. The oils showed interesting phytotoxic and alpha-amylase inhibitory activities, which deserve to be further investigated.
Collapse
|
11
|
Polito F, Kouki H, Khedhri S, Hamrouni L, Mabrouk Y, Amri I, Nazzaro F, Fratianni F, De Feo V. Chemical Composition and Phytotoxic and Antibiofilm Activity of the Essential Oils of Eucalyptus bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora and E. tereticornis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223017. [PMID: 36432746 PMCID: PMC9699501 DOI: 10.3390/plants11223017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Eucalyptus species are characterized by their richness in essential oils (EOs) with a great diversity of biological activities. This study reports the chemical composition and the phytotoxic and antibiofilm activities of the EOs of six Eucalyptus species growing in Tunisia: E. bicostata, E. gigantea, E. intertexta, E. obliqua, E. pauciflora and E. tereticornis. Four EOs were rich above all in oxygenated monoterpenes (25.3-91.4%), with eucalyptol as the main constituent. However, in the EOs of E. pauciflora and E. tereticornis, sesquiterpene hydrocarbons (28.8-54.0%) were the main class of constituents; piperitone was the main constituent of both EOs. The phytotoxicity of the EOs was tested against germination and radicle elongation of the weeds Sinapis arvensis and Lolium multiflorum and the crop Raphanus sativus, resulting in the different inhibition of seed germination and radicle elongation depending on both chemical composition and the seed tested, with remarkable phytotoxicity towards S. arvensis and R. sativus. Furthermore, almost all EOs showed antibacterial potential, resulting in significant inhibition of bacterial biofilm formation and the metabolism of Gram-positive (Staphylococcus aureus subsp. aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains, in addition to acting on mature biofilms. The EOs were inhibitory against all bacterial strains tested and usually reluctant to undergo the action of conventional antibiotics. Therefore, these EOs may be considered for applications both as herbicides and in food and health fields.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Habiba Kouki
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| |
Collapse
|
12
|
Malaspina P, Papaianni M, Ranesi M, Polito F, Danna C, Aicardi P, Cornara L, Woo SL, De Feo V. Eucalyptus cinerea and E. nicholii by-Products as Source of Bioactive Compounds for Agricultural Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:2777. [PMID: 36297802 PMCID: PMC9609402 DOI: 10.3390/plants11202777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The cultivation of different species of Eucalyptus has recently expanded in Liguria (Italy) due to the growing demand of the North European floricultural market. Eucalyptus tree branches are cut and selected for their quality, resulting in large amounts of waste biomass to be disposed of. The aim of our study was to evaluate the phytotoxic and antimicrobial activities of essential oils (EOs) from pruning wastes of E. cinerea (EC) and E. nicholii (EN), for potential applications in agriculture. Phytochemical analyses showed eucalyptol (1,8-cineole) as the major component in both EOs, but the EO yield of EN was higher than that of EC, in agreement with a significantly higher oil gland density on EN leaves. EOs from both species showed phytotoxicity on both weeds tested, but no significant inhibition on horticultural crop seed germination, except for Raphanus sativus. The EO from EC showed the strongest antibacterial activity, while the EO from EN showed the strongest antifungal activity. Concluding, EOs from Eucalyptus pruning may be used as possible alternatives to synthetic herbicides and pesticides, acting as antimicrobial and antifungal agents, thus representing a safe strategy for crop management programs.
Collapse
Affiliation(s)
- Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Marta Ranesi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Cristina Danna
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | | | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
13
|
Kouki H, Polito F, De Martino L, Mabrouk Y, Hamrouni L, Amri I, Fratianni F, De Feo V, Nazzaro F. Chemistry and Bioactivities of Six Tunisian Eucalyptus Species. Pharmaceuticals (Basel) 2022; 15:ph15101265. [PMID: 36297377 PMCID: PMC9611224 DOI: 10.3390/ph15101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The complex taxonomy of Eucalyptus genus, the renewed interest in natural compounds able to combat microbial strains, the overuse of synthetic pesticides, the consequent request for alternative control methods were the reasons for this research. The essential oils (Eos) of Eucalyptus bosistoana, Eucalyptus melliodora, Eucalyptus odorata, Eucalyptus paniculata, Eucalyptus salmonopholia, and Eucalyptus transcontinentalis were analyzed by GC/MS and their potential phytotoxic activity was evaluated against the germination and radicle elongation of Sinapis arvensis, Raphanus sativus and Lolium multiflorum. The antibiofilm activity was assayed against both Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii) bacteria. Monoterpenoids were the most representative constituents in all EOs and eucalyptol was the dominant component except in E. melliodora EO, in which p-cymene was the most abundant. In phytotoxic assays, the EOs from E. odorata and E. paniculata were the most active against germination and radical elongation of the tested seeds. Finally, the Eucalyptus EOs proved their capacity to effectively inhibit the adhesion process of all five pathogen strains, with percentages often reaching and exceeding 90%. These Eucalytpus EOs could have possible employments in the food, health and agricultural fields.
Collapse
Affiliation(s)
- Habiba Kouki
- Faculty of Sciences, Bizerte, Zarzouna 7021, Tunisia
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
- Correspondence: ; Tel.: +39-089-969751
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
14
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|