1
|
Han L, Wang B, Sun K, Sitara M, Li M, Wang P, Chen N, Yu XA, Tian J. A SARS-CoV-2 M pro fluorescent sensor for exploring pharmacodynamic substances from traditional Chinese medicine. Analyst 2024; 149:3585-3595. [PMID: 38767148 DOI: 10.1039/d4an00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The main protease of SARS-CoV-2 (SARS-CoV-2 Mpro) plays a critical role in the replication and life cycle of the virus. Currently, how to screen SARS-CoV-2 Mpro inhibitors from complex traditional Chinese medicine (TCM) is the bottleneck for exploring the pharmacodynamic substances of TCM against SARS-CoV-2. In this study, a simple, cost-effective, rapid, and selective fluorescent sensor (TPE-S-TLG sensor) was designed with an AIE (aggregation-induced emission) probe (TPE-Ph-In) and the SARS-CoV-2 Mpro substrate (S-TLG). The TPE-S-TLG sensor was characterized using UV-Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential, and Fourier transform infrared (FTIR) spectroscopy techniques. The limit of detection of this method to detect SARS-CoV-2 Mpro was measured to be 5 ng mL-1. Furthermore, the TPE-S-TLG sensor was also successfully applied to screen Mpro inhibitors from Xuebijing injection using the separation and collection of the HPLC-fully automatic partial fraction collector (HPLC-FC). Six active compounds, including protocatechualdehyde, chlorogenic acid, hydroxysafflower yellow A, caffeic acid, isoquercetin, and pentagalloylglucose, were identified using UHPLC-Q-TOF/MS that could achieve 90% of the Mpro inhibition rate for the Xuebijing injection. Accordingly, the strategy can be broadly applied in the detection of disease-related proteases as well as screening active substances from TCM.
Collapse
Affiliation(s)
- Lei Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Muqadas Sitara
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Ning Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic of China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
3
|
Exploring the processing-related components from asparagi radix via diversified spectrum-effect relationship. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Cytotoxic and Antioxidant Activities of Imine Analogs of Trans-Resveratrol towards Murine Neuronal N2a Cells. Molecules 2022; 27:molecules27154713. [PMID: 35897887 PMCID: PMC9332718 DOI: 10.3390/molecules27154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Trans-resveratrol is a natural polyphenol showing numerous biological properties, especially anti-tumoral and antioxidant activity. Among numerous resveratrol derivatives, aza-stilbenes, which bear an imine bound, show interesting biological activities. In the present study, we synthesized a series of imine analogs of trans-resveratrol (seven aza-stilbenes) following an easy and low-cost procedure of green chemistry. The toxicity of synthesized aza-stilbenes, which is currently unknown, was evaluated on murine neuronal N2a cells, comparatively to trans-resveratrol, by considering: cell density evaluated by staining with sulforhodamine 101; esterase activity, which is a criteria of cell viability, by staining with fluorescein diacetate; and transmembrane mitochondrial potential, which is known to decrease during cell death, by staining with DiOC6(3) using flow cytometry. In addition, the antioxidant activity was quantified with the KRL (Kit Radicaux Libres) assay, the DPPH (2,2′-diphenyl-1-picrylhydrazyl radical) assay and the FRAP (ferric reducing antioxidant power) assay. The PAOT (Pouvoir Antioxidant Total) score was also used. The aza-stilbenes provide different cytotoxic and antioxidant activities, which are either higher or lower than those of trans-resveratrol. Based on their cytotoxic and antioxidant characteristics, all synthesized aza-stilbenes are distinguished from trans-resveratrol.
Collapse
|
5
|
Gao Y, Yu XA, Wang B, Gu L, Ge Y, Zhu G, Sun K, Lu Y, Wang T, Bi K. Comparative pharmacokinetic study of twelve phenolic acids and flavonoids from red wine between control and coronary heart disease model rats by UFLC–MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|