1
|
Wang Y, Feng W, Wang F, Min J. [Research progress of iron metabolism and ferroptosis in myeloid neoplasms]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:735-746. [PMID: 39608794 DOI: 10.3724/zdxbyxb-2024-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
It is reported that iron metabolism and ferroptosis can influence the occurrence and development of myeloid tumors, which can serve as therapeutic targets. Dysregulation of iron metabolism is present in a variety of myeloid neoplasms. The prognosis of acute myeloid leukemia is related to differential expression of molecules related to iron metabolism. The prognosis of myelodysplastic syndrome patients with iron overload is poor. Myeloproliferative neoplasms are often characterized by the coexistence of iron deficiency and erythrocytosis, which can be treated by targeting hepcidin. Myeloid tumor cells are susceptible to oxidative damage caused by the accumulation of reactive oxygen species and are sensitive to ferroptosis. Ferroptosis has anti-tumor effect in acute myeloid leukemia and myelodysplastic syndrome. Targeting ferroptosis can reverse imatinib resistance in chronic myeloid leukemia. This article reviews the characteristics of iron metabolism in the development and progression of myeloid neoplasms, as well as the mechanism of ferroptosis, to provide a basis for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Fudi Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
3
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
4
|
Ouassaf M, Bourougaa L, Bahaz F, Alhatlani BY. Exploring the Antiviral Potential of Artemisia annua Through JAK-STAT Pathway Targeting: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1539. [PMID: 39598448 PMCID: PMC11597232 DOI: 10.3390/ph17111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Artemisia annua, a plant with antiviral potential, has shown promise against various viral infections, yet its mechanisms of action are not fully understood. This study explores A. annua's antiviral effects using network pharmacology and molecular docking, focusing on key active compounds and their interactions with viral protein targets, particularly within the JAK-STAT signaling pathway-a critical mediator of immune responses to viral infections. METHODS From the TCMSP database, we identified eight active compounds and 335 drug targets for A. annua, with 19 intersecting targets between A. annua compounds and viral proteins. A protein-protein interaction (PPI) network highlighted 10 key hub genes, analyzed further through Gene Ontology (GO) and KEGG pathways to understand their immune and antiviral roles. ADMET properties of the active compound Patuletin (MOL004112) were assessed, followed by 200 ns molecular dynamics simulations to examine its stability in complex with JAK2. RESULTS PPI analysis identified JAK2, MAPK3, MAPK1, JAK1, PTPN1, HSPA8, TYK2, RAF1, MAPT, and HMOX1 as key hub genes, with JAK2 emerging as a critical regulator of immune and antiviral pathways. ADMET analysis confirmed Patuletin's favorable pharmacokinetic properties, and molecular dynamics simulations showed a stable Patuletin-JAK2 complex, with FEL analysis indicating minimal disruption to JAK2's intrinsic flexibility. CONCLUSIONS These findings highlight JAK2 as a promising target in the antiviral activity of A. annua compounds, particularly Patuletin, supporting its potential as an antiviral agent and providing a foundation for further research on A. annua's therapeutic applications.
Collapse
Affiliation(s)
- Mebarka Ouassaf
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria;
| | - Lotfi Bourougaa
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, BP 145, Biskra 07000, Algeria;
| | - Farial Bahaz
- Laboratory of Organic Materials and Heterochemistry, Echahid Cheikh Larbi Tebessi University, Tebessa 12000, Algeria;
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
5
|
Das G, Shin HS, Patra JK. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Curr Issues Mol Biol 2024; 46:12099-12118. [PMID: 39590312 PMCID: PMC11593081 DOI: 10.3390/cimb46110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Artemisinin is a truly fascinating drug in many ways. Since the unrestrained procedure of its detection, as an antimalarial drug, artemisinin has received a great deal of consideration. Recently, application of artemisinin-based combination therapy has been broadly applied for treating numerous ailments. Moreover, as an antimalarial compound, artemisinin and its associated compounds have abundant healing efficacy and can be repurposed for additional symptoms, like autoimmune infections, cancer, and viral contaminations. Recently a number of studies have highlighted the significance of the artemisinin-related compounds in SARS-CoV-2 treatment. The current review purposes to present a concise account of the history of the antiviral and antimalarial prodrugs-Artemisinin, from the Artemisia species. It is followed by its antiviral, antimalarial prospective, chemical nature and extraction procedure, photochemistry, mechanism of action, and its clinical trials and patents, and accentuates the significance of the mechanistic studies concerned for therapeutic results, both in viral and malarial circumstances.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| |
Collapse
|
6
|
Ribeiro LR, Dos Santos AMF, da Cruz Guedes E, Bezerra TLDS, de Souza TL, Filho JMB, de Almeida RN, Salvadori MGDSS. Effects of acute administration of 4-allyl-2,6-dimethoxyphenol in mouse models of seizures. Epilepsy Res 2024; 205:107421. [PMID: 39068729 DOI: 10.1016/j.eplepsyres.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent unprovoked seizures, presents a substantial challenge in approximately one-third of cases exhibiting resistance to conventional pharmacological treatments. This study investigated the effect of 4-allyl-2,6-dimethoxyphenol, a phenolic compound derived from various natural sources, in different models of induced seizures and its impact on animal electroencephalographic (EEG) recordings. Adult male Swiss albino mice were pre-treated (i.p.) with a dose curve of 4-allyl-2,6-dimethoxyphenol (50, 100, or 200 mg/kg), its vehicle (Tween), or standard antiepileptic drug (Diazepam; or Phenytoin). Subsequently, the mice were subjected to different seizure-inducing models - pentylenetetrazole (PTZ), 3-mercaptopropionic acid (3-MPA), pilocarpine (PILO), or maximal electroshock seizure (MES). EEG analysis was performed on other animals surgically implanted with electrodes to evaluate brain activity. Significant results revealed that animals treated with 4-allyl-2,6-dimethoxyphenol exhibited increased latency to the first myoclonic jerk in the PTZ and PILO models; prolonged latency to the first tonic-clonic seizure in the PTZ, 3-MPA, and PILO models; reduced total duration of tonic-clonic seizures in the PTZ and PILO models; decreased intensity of convulsive seizures in the PTZ and 3-MPA models; and diminished mortality in the 3-MPA, PILO, and MES models. EEG analysis indicated an increase in the percentage of total power attributed to beta waves following 4-allyl-2,6-dimethoxyphenol administration. Notably, the substance protected from behavioral and electrographic seizures in the PTZ model, preventing increases in the average amplitude of recording signals while also inducing an increase in the participation of theta and gamma waves. These findings suggest promising outcomes for the tested phenolic compound across diverse pre-clinical seizure models, highlighting the need for further comprehensive studies to elucidate its underlying mechanisms and validate its clinical relevance in epilepsy management.
Collapse
Affiliation(s)
- Leandro Rodrigo Ribeiro
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil.
| | - Aline Matilde Ferreira Dos Santos
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Erika da Cruz Guedes
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Thamires Lucena da Silva Bezerra
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Thaíze Lopes de Souza
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - José Maria Barbosa Filho
- Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Mirian Graciela da Silva Stiebbe Salvadori
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
7
|
De Marchi E, Filippi S, Cesarini S, Di Maio B, Bizzarri BM, Saladino R, Botta L. Modulation of the Antimelanoma Activity Imparted to Artemisinin Hybrids by the Monoterpene Counterpart. Molecules 2024; 29:3421. [PMID: 39064999 PMCID: PMC11279807 DOI: 10.3390/molecules29143421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular hybridization is a widely used strategy in drug discovery and development processes that consists of the combination of two bioactive compounds toward a novel entity. In the current study, two libraries of hybrid derivatives coming from the linkage of sesquiterpene counterparts dihydroartemisinin and artesunic acid, with a series of monoterpenes, were synthesized and evaluated by cell viability assay on primary and metastatic melanoma cell lines. Almost all the obtained compounds showed micromolar antimelanoma activity and selectivity toward the metastatic form of this cancer. Four hybrid derivatives containing perillyl alcohol, citronellol, and nerol as monoterpene counterpart emerged as the best compounds of the series, with nerol being active in combination with both sesquiterpenes, dihydroartemisinin and artesunic acid. Preliminary studies on the mechanism of action have shown the dependence of the pharmacological activity of newly synthesized hybrids on the formation of carbon- and oxygen-centered radical species. This study demonstrated the positive modulation of the pharmacodynamic effect of artemisinin semisynthetic derivatives dihydroartemisinin and artesunic acid due to the hybridization with monoterpene counterparts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lorenzo Botta
- Department of Biological and Ecological Sciences, University of Viterbo, Via S.C. De Lellis s.n.c., 01100 Viterbo, Italy; (E.D.M.); (S.F.); (S.C.); (B.D.M.); (B.M.B.); (R.S.)
| |
Collapse
|
8
|
Wu T, Wang WJ, Li ZY, Liu YT, Yu TP, Li SG, Du HZ, Gui C, Liu DH, Yang XL. Anti-inflammatory discovery of sesquiterpenoids and a jasmonic acid derivative from Artemisia stolonifera. PHYTOCHEMISTRY 2024; 223:114120. [PMID: 38705265 DOI: 10.1016/j.phytochem.2024.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1β in a dose-dependent manner at 25, 50 and 100 μM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.
Collapse
Affiliation(s)
- Ting Wu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Wen-Jing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Zhou-Yuan Li
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Yi-Tian Liu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Tian-Ping Yu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Shuang-Ge Li
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Hong-Zhi Du
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Chun Gui
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Da-Hui Liu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
| | - Xiao-Long Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Zamarioli LDS, Santos MRM, Erustes AG, Meccatti VM, Pereira TC, Smaili SS, Marcucci MC, Oliveira CR, Pereira GJS, Bincoletto C. Artemisia vulgaris Induces Tumor-Selective Ferroptosis and Necroptosis via Lysosomal Ca 2+ Signaling. Chin J Integr Med 2024; 30:525-533. [PMID: 38040876 DOI: 10.1007/s11655-023-3712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To evaluate the chemical composition and effects of Artemisia vulgaris (AV) hydroalcoholic extract (HEAV) on breast cancer cells (MCF-7 and SKBR-3), chronic myeloid leukemia (K562) and NIH/3T3 fibroblasts. METHODS Phytochemical analysis of HEAV was done by high-performance liquid chromatography-mass (HPLC) spectrometry. Viability and cell death studies were performed using trypan blue and Annexin/FITC-7AAD, respectively. Ferrostatin-1 (Fer-1) and necrostatin-1 (Nec-1) were used to assess the mode of HEAV-induced cell death and acetoxymethylester (BAPTA-AM) was used to verify the involvement of cytosolic calcium in this event. Cytosolic calcium measurements were made using Fura-2-AM. RESULTS HEAV decreased the viability of MCF-7, SKBR-3 and K562 cells (P<0.05). The viability of HEAV-treated K562 cells was reduced compared to HEAV-exposed fibroblasts (P<0.05). Treatment of K562 cells with HEAV induced cell death primarily by late apoptosis and necrosis in assays using annexin V-FITC/7-AAD (P<0.05). The use of Nec-1 and Fer-1 increased the viability of K562 cells treated with HEAV relative to cells exposed to HEAV alone (P<0.01). HEAV-induced Ca2+ release mainly from lysosomes in K562 cells (P<0.01). Furthermore, BAPTA-AM, an intracellular Ca2+ chelator, decreased the number of non-viable cells treated with HEAV (P<0.05). CONCLUSIONS HEAV is cytotoxic and activates several modalities of cell death, which are partially dependent on lysosomal release of Ca2+. These effects may be related to artemisinin and caffeoylquinic acids, the main compounds identified in HEAV.
Collapse
Affiliation(s)
- Lucas Dos Santos Zamarioli
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Michele Rosana Maia Santos
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Vanessa Marques Meccatti
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Carlos Rocha Oliveira
- Research Group on Phytocomplexes and Cell Signaling, School of Health Sciences, Anhembi Morumbi University, São Paulo, SP, 03164-000, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
10
|
Bernatoniene J, Nemickaite E, Majiene D, Marksa M, Kopustinskiene DM. In Vitro and In Silico Anti-Glioblastoma Activity of Hydroalcoholic Extracts of Artemisia annua L. and Artemisia vulgaris L. Molecules 2024; 29:2460. [PMID: 38893336 PMCID: PMC11173592 DOI: 10.3390/molecules29112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma, the most aggressive and challenging brain tumor, is a key focus in neuro-oncology due to its rapid growth and poor prognosis. The C6 glioma cell line is often used as a glioblastoma model due to its close simulation of human glioma characteristics, including rapid expansion and invasiveness. Alongside, herbal medicine, particularly Artemisia spp., is gaining attention for its anticancer potential, offering mechanisms like apoptosis induction, cell cycle arrest, and the inhibition of angiogenesis. In this study, we optimized extraction conditions of polyphenols from Artemisia annua L. and Artemisia vulgaris L. herbs and investigated their anticancer effects in silico and in vitro. Molecular docking of the main phenolic compounds of A. annua and A. vulgaris and potential target proteins, including programmed cell death (apoptosis) pathway proteins proapoptotic Bax (PDB ID 6EB6), anti-apoptotic Bcl-2 (PDB ID G5M), and the necroptosis pathway protein (PDB ID 7MON), mixed lineage kinase domain-like protein (MLKL), in complex with receptor-interacting serine/threonine-protein kinase 3 (RIPK3), revealed the high probability of their interactions, highlighting the possible influence of chlorogenic acid in modulating necroptosis processes. The cell viability of rat C6 glioma cell line was assessed using a nuclear fluorescent double-staining assay with Hoechst 33342 and propidium iodide. The extracts from A. annua and A. vulgaris have demonstrated anticancer activity in the glioblastoma model, with the synergistic effects of their combined compounds surpassing the efficacy of any single compound. Our results suggest the potential of these extracts as a basis for developing more effective glioblastoma treatments, emphasizing the importance of further research into their mechanisms of action and therapeutic applications.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Emilija Nemickaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
| | - Daiva Majiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (E.N.); (D.M.)
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu Street 4, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
11
|
Dogra S, Koul B, Singh J, Mishra M, Yadav D. Phytochemical Analysis, Antimicrobial Screening and In Vitro Pharmacological Activity of Artemisia vestita Leaf Extract. Molecules 2024; 29:1829. [PMID: 38675649 PMCID: PMC11054168 DOI: 10.3390/molecules29081829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Artemisia vestita Wall. Ex Besser is a folklore medicinal plant that belongs to Asteraceae family and a treasure trove of drugs. The aim of this research study was to investigate the phytoconstituents, antimicrobial activity, antioxidant, anti-inflammatory, cytotoxicity and wound healing potential of A. vestita leaf extract (ALE). Phytochemical analysis of the ALE was carried out by Soxhlet extraction and GCMS (gas chromatography-mass spectrometry) analysis. Antimicrobial activity was performed by the agar well diffusion method against selected bacterial and fungal strains. Free radical scavenging potential was evaluated by DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (Ferric reducing antioxidant power) assays. Anti-inflammatory activity was performed by enzyme inhibition assay-COXII. The cytotoxicity of ALE on HaCaT cells was studied via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. An in vitro scratch assay was performed for the evaluation of the wound healing property of ALE. It showed satisfactory antimicrobial activity against Staphylococcus aureus (14.2 ± 0.28 mm), Escherichia coli (17.6 ± 0.52 mm), Bacillus subtilis (13.1 ± 0.37 mm), Streptococcus pyogenes (17.3 ± 0.64 mm), Proteus mirabilis (9.4 ± 0.56 mm), Aspergillus niger (12.7 ± 0.53 mm), Aspergilus flavus (15.3 ± 0.25 mm) and Candida albicans (17.6 ± 0.11 mm). In ALE, 36 phytochemicals were detected by GCMS analysis, but 22 were dominant. Moreover, the ALE was effective in scavenging free radicals with different assays and exhibited reasonable anti-inflammatory activity. The MTT assay revealed that ALE had a cytotoxic effect on the HaCaT cells. The scratch assay showed 94.6% wound closure (after 24 h incubation) compared to the positive control Cipladine, which is remarkable wound healing activity. This is the first report on the wound healing property of A. vestita, which can serve as a potential agent for wound healing and extends knowledge on its therapeutic potential.
Collapse
Affiliation(s)
- Shivani Dogra
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Zunheboto 798627, Zunheboto, India;
| | - Meerambika Mishra
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
Wang J, Shi T, Wang H, Li M, Zhang X, Huang L. Estimating the Amount of the Wild Artemisia annua in China Based on the MaxEnt Model and Spatio-Temporal Kriging Interpolation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1050. [PMID: 38611578 PMCID: PMC11013724 DOI: 10.3390/plants13071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
In order to determine the distribution area and amount of Artemisia annua Linn. (A. annua) in China, this study estimated the current amount of A. annua specimens based on the field survey sample data obtained from the Fourth National Census of Chinese Medicinal Resources. The amount was calculated using the maximum entropy model (MaxEnt model) and spatio-temporal kriging interpolation. The influencing factors affecting spatial variations in the amount were studied using geographic probes. The results indicated that the amount of A. annua in China was about 700 billion in 2019. A. annua was mainly distributed in the circular coastal belt of Shandong Peninsula, central Hebei, Tianjin, western Liaoning, and along the Yangtze River and in the middle and lower reaches of Jiangsu, Anhui, and the northern Chongqing provinces. The main factors affecting the amount are the precipitation in the wettest and the warmest seasons, the average annual precipitation, and the average temperature in the coldest and the driest seasons. The results show that the amount of A. annua is strongly influenced by precipitation and temperature.
Collapse
Affiliation(s)
- Juan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingting Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaobo Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
13
|
Anibogwu R, Jesus KD, Pradhan S, Leuven SV, Sharma K. Sesquiterpene Lactones and Flavonoid from the Leaves of Basin Big Sagebrush ( Artemisia tridentata subsp. tridentata): Isolation, Characterization and Biological Activities. Molecules 2024; 29:802. [PMID: 38398555 PMCID: PMC10892904 DOI: 10.3390/molecules29040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
This research is an exploratory study on the sesquiterpenes and flavonoid present in the leaves of Artemisia tridentata subsp. tridentata. The leaf foliage was extracted with 100% chloroform. Thin-layer chromatography (TLC) analysis of the crude extract showed four bands. Each band was purified by column chromatography followed by recrystallization. Three sesquiterpene lactones (SLs) were isolated-leucodin, matricarin and desacetylmatricarin. Of these, desacetylmatricarin was the major component. In addition, a highly bio-active flavonoid, quercetagetin 3,6,4'-trimethyl ether (QTE), was also isolated. This is the first report on the isolation of this component from the leaves of Artemisia tridentata subsp. tridentata. All the components were identified and isolated by TLC, high-performance liquid chromatography (HPLC) and mass spectrometry (MS) techniques. Likewise, the structure and stereochemistry of the purified components were characterized by extensive spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) studies. The antioxidant activities of crude extract were analyzed, and their radical-scavenging ability was determined by Ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The crude extract showed antioxidant activity of 18.99 ± 0.51 and 11.59 ± 0.38 µmol TEg-1 FW for FRAP and DPPH assay, respectively, whereas the activities of matricarin, leucodin, desacetylmatricarin and QTE were 13.22, 13.03, 14.90 and 15.02 µmol TEg-1 FW, respectively, for the FRAP assay. The antitumor properties were probed by submitting the four isolated compounds to the National Cancer Institute (NCI) for NCI-60 cancer cell line screening. Overall, the results of the one-dose assay for each SL were unremarkable. However, the flavonoid's one-dose mean graph demonstrated significant growth inhibition and lethality, which prompted an evaluation of this compound against the 60-cell panel at a five-dose assay. Tests from two separate dates indicate a lethality of approximately 75% and 98% at the log-4 concentration when tested against the melanoma cancer line SK-Mel 5. This warrants further testing and derivatization of the bioactive components from sagebrush as a potential source for anticancer properties.
Collapse
Affiliation(s)
- Rosemary Anibogwu
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Karl De Jesus
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Samjhana Pradhan
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Shanae Van Leuven
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Pocatello, ID 83209, USA
| |
Collapse
|
14
|
Otarigho B, Falade MO. Natural Perylenequinone Compounds as Potent Inhibitors of Schistosoma mansoni Glutathione S-Transferase. Life (Basel) 2023; 13:1957. [PMID: 37895339 PMCID: PMC10608284 DOI: 10.3390/life13101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The existing treatment strategy for Schistosomiasis centers on praziquantel, a single drug, but its effectiveness is limited due to resistance and lack of preventive benefits. Thus, there is an urgent need for novel antischistosomal agents. Schistosoma glutathione S-transferase (GST) is an essential parasite enzyme, with a high potential for targeted drug discovery. In this study, we conducted a screening of compounds possessing antihelminth properties, focusing on their interaction with the Schistosoma mansoni glutathione S-transferase (SmGST) protein. We demonstrated the unique nature of SmGST in comparison to human GST. Evolutionary analysis indicated its close relationship with other parasitic worms, setting it apart from free-living worms such as C. elegans. Through an assessment of binding pockets and subsequent protein-ligand docking, we identified Scutiaquinone A and Scutiaquinone B, both naturally derived Perylenequinones, as robust binders to SmGST. These compounds have exhibited effectiveness against similar parasites and offer promising potential as antischistosomal agents.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
15
|
Nikitin E, Fitsev I, Egorova A, Logvinenko L, Terenzhev D, Bekmuratova F, Rakhmaeva A, Shumatbaev G, Gatiyatullina A, Shevchuk O, Kalinnikova T. Five Different Artemisia L. Species Ethanol Extracts' Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int J Mol Sci 2023; 24:14372. [PMID: 37762675 PMCID: PMC10532408 DOI: 10.3390/ijms241814372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Among the plants that exhibit significant or established pharmacological activity, the genus Artemisia L. deserves special attention. This genus comprises over 500 species belonging to the largest Asteraceae family. Our study aimed at providing a comprehensive evaluation of the phytochemical composition of the ethanol extracts of five different Artemisia L. species (collected from the southwest of the Russian Federation) and their antimicrobial and nematocide activity as follows: A. annua cv. Novichok., A. dracunculus cv. Smaragd, A. santonica cv. Citral, A. abrotanum cv. Euxin, and A. scoparia cv. Tavrida. The study of the ethanol extracts of the five different Artemisia L. species using the methods of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-MS/MS) allowed establishing their phytochemical profile. The obtained data on the of five different Artemisia L. species ethanol extracts' phytochemical composition were used to predict the antibacterial and antifungal activity against phytopathogenic microorganisms and nematocidal activity against the free-living soil nematode Caenorhabditis elegans. The major compounds found in the composition of the Artemisia L. ethanol extracts were monoterpenes, sesquiterpenes, flavonoids, flavonoid glycosides, coumarins, and phenolic acids. The antibacterial and antifungal activity of the extracts began to manifest at a concentration of 150 µg/mL. The A. dracunculus cv. Smaragd extract had a selective effect against Gram-positive R. iranicus and B. subtilis bacteria, whereas the A. scoparia cv. Tavrida extract had a selective effect against Gram-negative A. tumefaciens and X. arboricola bacteria and A. solani, R. solani and F. graminearum fungi. The A. annua cv. Novichok, A. dracunculus cv. Smaragd, and A. santonica cv. Citral extracts in the concentration range of 31.3-1000 µg/mL caused the death of nematodes. It was established that A. annua cv. Novichok affects the UNC-63 protein, the molecular target of which is the nicotine receptor of the N-subtype.
Collapse
Affiliation(s)
- Evgeny Nikitin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Igor Fitsev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Anastasia Egorova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Dmitriy Terenzhev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Feruzakhon Bekmuratova
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Adelya Rakhmaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Georgiy Shumatbaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Alsu Gatiyatullina
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Tatiana Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| |
Collapse
|
16
|
Can Gerçek Y, Kutlu N, Çelik S, Gıdık B, Bayram S, Bayram NE. Extraction of Functional Compounds from Tarragon (Artemisia dracunculus L.) by Deep Eutectic Solvents at Different Properties. Chem Biodivers 2023; 20:e202300417. [PMID: 37574459 DOI: 10.1002/cbdv.202300417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
In this study, it was aimed to examine the capacity of deep eutectic solvents (DESs) with different contents to extract bioactive compounds from tarragon (Artemisia dracunculus L.) plant. For this reason, the total phenolic-flavonoid content, total proanthocyanidin content and antioxidant/antimicrobial activities of the prepared DES extracts were investigated, as well as the individual phenolic and individual amino acid profiles. According to the results, DES10 had the highest efficiency in terms of its capacity to extract individual phenolics (approximately 59 mg/100 g) and individual amino acids (approximately 2500 mg/kg), and also gave a higher yield compared to ethanol (approximately 44 mg/100 g for individual phenolics and about 19810 mg/kg for individual amino acids) and methanol (approximately 58 mg/100 g for individual phenolics and approximately 21430 mg/kg for individual amino acids). However, the total phenolic content, total flavonoid content and antioxidant activity values of DES extracts were determined between 59.09-77.50 mg GAE/100 g, 28.68-45.55 mg GAE/100 g and 42.96-146.86 mg TE/100 g, respectively. Therefore, it can be recommended to use these green solvents, which are known as environmentally friendly, as an alternative to organic solvents in the process of preparing extracts of this important medicinal plant in different areas.
Collapse
Affiliation(s)
- Yusuf Can Gerçek
- Department of Biology, Faculty of Science, Istanbul University, 34116, Istanbul, Turkey
- Center for Plant and Herbal Products Research-Development, 34134, Istanbul, Turkey
| | - Naciye Kutlu
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500, Bayburt, Turkey
| | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, 22100, Edirne, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Faculty of Applied Science, Bayburt University, 69000, Bayburt, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, 69000, Bayburt, Turkey
| | - Nesrin Ecem Bayram
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500, Bayburt, Turkey
| |
Collapse
|
17
|
He XF, Wang MF, Ma YB, Li TZ, Chen JJ. Artemeriosides A-F, the first examples of natural sesquiterpenoids substituted by a 6'-O-crontonyl β-glucopyranoside from Artemisia annua. Fitoterapia 2023; 169:105619. [PMID: 37487797 DOI: 10.1016/j.fitote.2023.105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Artemeriosides A-F (1-6), six novel sesquiterpenoids containing a 6'-O-crontonyl β-glucopyranoside, were isolated from Artemisia annua L. Their structures were determined by spectral data including HRESIMS, IR, UV, 1D and 2D NMR, and ECD calculations. Compounds 1-6 represented the first examples of natural sesquiterpenoid substituted by 6'-O-crontonyl β-glucopyranoside. By antihepatoma assay, compounds 1 and 2 demonstrated inhibitory effect against both HepG2 and SK-Hep-1 cells with inhibitory ratios of 77.0%, 88.8%, and 86.8%, 83.9% at 200.0 μM, and compound 1 showed inhibitory activity against Huh7 cells with inhibitory ratio of 56.8%.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meng-Fei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China.
| |
Collapse
|
18
|
Lantzouraki DZ, Amerikanou C, Karavoltsos S, Kafourou V, Sakellari A, Tagkouli D, Zoumpoulakis P, Makris DP, Kalogeropoulos N, Kaliora AC. Artemisia arborescens and Artemisia inculta from Crete; Secondary Metabolites, Trace Metals and In Vitro Antioxidant Activities. Life (Basel) 2023; 13:1416. [PMID: 37374198 DOI: 10.3390/life13061416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Currently, the use of medicinal plants has increased. Artemisia species have been used in several applications, including medicinal use and uses in cosmetics, foods and beverages. Artemisia arborescens L. and Artemisia inculta are part of the Mediterranean diet in the form of aqueous infusions. Herein, we aimed to compare the secondary metabolites of the decoctions and two different extracts (methanolic and aqueous-glycerolic) of these two species, as well as their antioxidant capacity and trace metal levels. METHODS Total phenolic, total flavonoid, total terpenes, total hydroxycinnamate, total flavonol, total anthocyanin contents and antioxidant/antiradical activity were determined, and GC/MS analysis was applied to identify and quantify phenolics and terpenoids. Trace metals were quantified with ICP-MS. RESULTS Aqueous-glycerolic extracts demonstrated higher levels of total secondary metabolites, greater antioxidant potential and higher terpenoid levels than decoctions and methanolic extracts. Subsequently, the aqueous-glycerolic extract of a particularly high phenolic content was further analyzed applying targeted LC-MS/MS as the most appropriate analytic tool for the determination of the phenolic profile. Overall, twenty-two metabolites were identified. The potential contribution of infusions consumption to metal intake was additionally evaluated, and did not exceed the recommended daily intake. CONCLUSIONS Our results support the use of these two species in several food, cosmetic or pharmaceutical applications.
Collapse
Affiliation(s)
- Dimitra Z Lantzouraki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Vasiliki Kafourou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitra Tagkouli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitris P Makris
- Department of Food Science & Nutrition, School of Agricultural Sciences, University of Thessaly, N. Temponera Street, 43100 Karditsa, Greece
| | - Nick Kalogeropoulos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| |
Collapse
|
19
|
Umam K, Feng CS, Yang G, Tu PC, Lin CY, Yang MT, Kuo TF, Yang WC, Tran Nguyen Minh H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel) 2023; 10:633. [PMID: 37370564 DOI: 10.3390/bioengineering10060633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.
Collapse
Affiliation(s)
- Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Faculty of Life Science and Technology, Biotechnology Department, Sumbawa University of Technology, Sumbawa Besar 84371, NTB, Indonesia
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping-Chen Tu
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City 23143, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
20
|
Zippilli C, Filippi S, Cesarini S, Bizzarri BM, Conigliaro P, De Marchi E, Botta L, Saladino R. Synthesis of Artesunic Acid-Coumarin Hybrids as Potential Antimelanoma Agents. ACS Med Chem Lett 2023; 14:599-605. [PMID: 37197457 PMCID: PMC10184312 DOI: 10.1021/acsmedchemlett.3c00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Current therapy against melanoma relies on surgical treatment or, in alternative, on conventional drug therapy. Often these therapeutic agents are ineffective due to the development of resistance phenomena. For this purpose, chemical hybridization emerged as an effective strategy to overcome the development of drug resistance. In this study, a series of molecular hybrids were synthesized combining the sesquiterpene artesunic acid with a panel of phytochemical coumarins. Cytotoxicity, antimelanoma effect, and cancer selectivity of the novel compounds were evaluated by MTT assay on primary and metastatic cells and on healthy fibroblasts as a reference. The two most active compounds showed lower cytotoxicity and higher activity against metastatic melanoma than paclitaxel and artesunic acid. Further tests, including cellular proliferation, apoptosis, confocal microscopy, and MTT analyses in the presence of an iron chelating agent, were conducted with the aim of tentatively addressing the mode of action and the pharmacokinetic profile of selected compounds.
Collapse
Affiliation(s)
| | | | - Silvia Cesarini
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Bruno Mattia Bizzarri
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Pauline Conigliaro
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Elisa De Marchi
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Lorenzo Botta
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| | - Raffaele Saladino
- Department of Ecological
and Biological Sciences, University of Tuscia, via S. C. De Lellis snc, 01100 Viterbo, Italy
| |
Collapse
|
21
|
Dogra S, Singh J, Koul B, Yadav D. Artemisia vestita: A Folk Medicine with Hidden Herbal Fortune. Molecules 2023; 28:molecules28062788. [PMID: 36985759 PMCID: PMC10054384 DOI: 10.3390/molecules28062788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional medicines are nature's gift and our native heritage, which play a vital role in maintaining a disease-free life. Artemisia vestita Wall. ex Besser (family: Asteraceae), popularly known as "Kubsha" or "Russian wormwood", is a highly enriched folklore medicine with wound- healing, antiphlogistic, antifebrile, antifeedant, anti-helminthic, antimicrobial, antiviral, antitumor, and antiproliferative potential attributed to the presence of various volatile and non-volatile secondary metabolites. A systematic and extensive review of the literature on A. vestita was carried out via the Web of Science, PubMed, INMEDPLAN, EMBASE, Google Scholar, and NCBI, as well as from several websites. The highly relevant literature contained in 109 references was selected for further inclusion in this review. A total of 202 bioactive compounds belonging to different chemical classes such as terpenoids, coumarins, flavonoids, alkaloids, acetylenes, tannins, carotenoids, and sterols have been reported in A. vestita, which are responsible for different pharmacological activities. The chemical structures obtained from the PubChem and Chem Spider databases were redrawn using the software Chem Draw® version 8.0. This review paper summarizes the distribution, botanical description, phytochemistry, pharmacological activities, and conservation of A. vestita, which will assist scientists for further investigation. Extensive studies on the active constituents, pharmaceutical standardization, mode of action, and sustainable conservation of A. vestita are needed to further explore its wound-healing and allied medicinal properties.
Collapse
Affiliation(s)
- Shivani Dogra
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
22
|
Composition of Fatty Acids from Artemisia anethifolia, A. desertorum, and A. pubescens. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Mishra S, Jayronia S, Tyagi LK, Kohli K. Targeted Delivery Strategies of Herbal-Based Nanogels: Advancements and Applications. Curr Drug Targets 2023; 24:1260-1270. [PMID: 37953621 DOI: 10.2174/0113894501275800231103063853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023]
Abstract
The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.
Collapse
Affiliation(s)
- Sudhanshu Mishra
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Sonali Jayronia
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Lalit Kumar Tyagi
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh-201306, India
| |
Collapse
|
24
|
Cheremnykh EG, Osipov AV, Starkov VG, Trang NTT, Khoa NC, Anh HN, Dung LT, Tsetlin VI, Utkin YN. New Plant Species Showing Antiprotozoian Activity. DOKL BIOCHEM BIOPHYS 2022; 507:334-339. [PMID: 36786997 DOI: 10.1134/s160767292234004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 02/15/2023]
Abstract
The effects of extracts of ten plant species from Russia and five species from Vietnam on the growth and survival of ciliates Tetrahymena pyriformis were studied. T. pyriformis belongs to the subkingdom Protozoa, which also includes pathogens of protozoan infections. Extraction of dried plants was carried out with acidic and alkaline aqueous solutions, as well as with an aqueous ethanol. Various amounts of extracts were added to the ciliate cells, and the number of cells survived after incubation for 1 and 24 h was recorded. We found that our samples of several plants, including wormwood, harmala, and licorice, similarly to those studied earlier, exhibit antiprotozoal activity, which may indicate that the secondary metabolites are the same in plants from different regions. Using the ciliate T. pyriformis as a model organism, the presence of antiprotozoal activity in extracts of lilac, chondrilla, cinquefoil, hop, and elm was shown for the first time.
Collapse
Affiliation(s)
| | - A V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Nguyen Cuu Khoa
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Hoang Ngoc Anh
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - Le Tien Dung
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh, Vietnam
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
25
|
Anwar S, Malik JA, Ahmed S, Kameshwar VA, Alanazi J, Alamri A, Ahemad N. Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227668. [PMID: 36431766 PMCID: PMC9698579 DOI: 10.3390/molecules27227668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms.
Collapse
Affiliation(s)
- Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
- Correspondence:
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, Gujarat, India
| | - Verma Abhishek Kameshwar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 641112, Kerala, India
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Selangor DE, Malaysia
| |
Collapse
|
26
|
Trifan A, Czerwińska ME, Mardari C, Zengin G, Sinan KI, Korona-Glowniak I, Skalicka-Woźniak K, Luca SV. Exploring the Artemisia Genus: An Insight into the Phytochemical and Multi-Biological Potential of A. campestris subsp. lednicensis (Spreng.) Greuter & Raab-Straube. PLANTS (BASEL, SWITZERLAND) 2022; 11:2874. [PMID: 36365326 PMCID: PMC9658600 DOI: 10.3390/plants11212874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The Artemisia L. genus includes over five hundred species with great economic and medicinal properties. Our study aimed to provide a comprehensive metabolite and bioactivity profile of Artemisia campestris subsp. lednicensis (Spreng.) Greuter & Raab-Straube collected from north-eastern Romania. Liquid chromatography with tandem high-resolution mass spectrometry (LC-HRMS/MS) analysis of different polarity extracts obtained from the aerial parts led to the identification of twelve flavonoids, three phenolic acids, two sesquiterpene lactones, two fatty acids, one coumarin, and one lignan. The antioxidant and enzyme inhibitory properties were shown in the DPPH (0.71−213.68 mg TE/g) and ABTS (20.57−356.35 mg TE/g) radical scavenging, CUPRAC (38.56−311.21 mg TE/g), FRAP (121.68−202.34 mg TE/g), chelating (12.88−22.25 mg EDTAE/g), phosphomolybdenum (0.92−2.11 mmol TE/g), anti-acetylcholinesterase (0.15−3.64 mg GALAE/g), anti-butyrylcholinesterase (0−3.18 mg GALAE/g), anti-amylase (0.05−0.38 mmol ACAE/g), anti-glucosidase (0.43−2.21 mmol ACAE/g), and anti-tyrosinase (18.62−48.60 mg KAE/g) assays. At 100 μg/mL, Artemisia extracts downregulated the secretion of tumor necrosis factor (TNF)-α in a lipopolysaccharide (LPS)-stimulated human neutrophil model (29.05−53.08% of LPS+ control). Finally, the Artemisia samples showed moderate to weak activity (minimum inhibitory concentration (MIC) > 625 mg/L) against the seventeen tested microbial strains (bacteria, yeasts, and dermatophytes). Overall, our study shows that A. campestris subsp. lednicensis is a promising source of bioactives with putative use as food, pharmaceutical and cosmetic ingredients.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
27
|
Maleš I, Pedisić S, Zorić Z, Elez-Garofulić I, Repajić M, You L, Vladimir-Knežević S, Butorac D, Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
28
|
Tong CW, Tao M, Zhang EB, Huang Y, Geng H, Yu Y. Artemisiaside A: A new Lignan Glycoside and its Analogues From the Aerial Parts of Artemisia argyi. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chemical analysis of the aerial parts of Artemisia argyi H. Lév. & Vaniot led to the isolation of 6 lignans, including a new lignan glycoside, artemisiaside A, using various chromatographic techniques. Detailed spectroscopic (including 1D, 2D- nuclear magnetic resonance) and high resolution mass spectroscopy procedures, and electronic circular dichroism were used to ascertain the structural orientations of these compounds. The anti-inflammatory activities of compounds 1 to 6 were evaluated by measuring their inhibitory effects on lipopolysaccharide (LPS) -induced nitric oxide (NO) production in RAW264.7 LPS-activated macrophages. At 50 μM, compound 1 showed moderate anti-inflammatory activity with an inhibition rate of 61.2%.
Collapse
Affiliation(s)
| | - Ming Tao
- Xichang University, Xichang, PR China
| | | | - Yi Huang
- Xichang University, Xichang, PR China
| | - Hao Geng
- Xichang University, Xichang, PR China
| | - Yang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| |
Collapse
|
29
|
Coskun Y, Taslidere F. Influence of biotic and abiotic elicitors on artemisinin, quercetin, caffeic acid and essential oil production in
Artemisia dracunculus
L. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yasemin Coskun
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| | - Feride Taslidere
- Faculty of Arts and Sciences, Department of Biology Suleyman Demirel University Isparta Turkey
| |
Collapse
|
30
|
Ndegwa FK, Kondam C, Aboagye SY, Esan TE, Waxali ZS, Miller ME, Gikonyo NK, Mbugua PK, Okemo PO, Williams DL, Hagen TJ. Traditional Kenyan herbal medicine: exploring natural products' therapeutics against schistosomiasis. J Helminthol 2022; 96:e16. [PMID: 35238288 PMCID: PMC10030042 DOI: 10.1017/s0022149x22000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Praziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure. This reinforces the urgency in finding alternative therapeutic options that could replace or complement PZQ. We explored the potential of medicinal plants commonly used by indigenes in Kenya for the treatment of various ailments including malaria, pneumonia, and diarrhoea for their antischistosomal properties. Employing the Soxhlet extraction method with different solvents, seven medicinal plants Artemisia annua, Ajuga remota, Bredilia micranta, Cordia africana, Physalis peruviana, Prunus africana and Senna didymobotrya were extracted. Qualitative phytochemical screening was performed to determine the presence of various phytochemicals in the plant extracts. Extracts were tested against Schistosoma mansoni newly transformed schistosomula (NTS) and adult worms and the schistosomicidal activity was determined by using the adenosine triphosphate quantitation assay. Phytochemical analysis of the extracts showed different classes of compounds such as alkaloids, tannins, terpenes, etc., in plant extracts active against S. mansoni worms. Seven extracts out of 22 resulted in <20% viability against NTS in 24 h at 100 μg/ml. Five of the extracts with inhibitory activity against NTS showed >69.7% and ≥72.4% reduction in viability against adult worms after exposure for 24 and 48 h, respectively. This study provides encouraging preliminary evidence that extracts of Kenyan medicinal plants deserve further study as potential alternative therapeutics that may form the basis for the development of the new treatments for schistosomiasis.
Collapse
Affiliation(s)
- Fidensio K. Ndegwa
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Chaitanya Kondam
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Samuel Y. Aboagye
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Taiwo E. Esan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Zohra Sattar Waxali
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Margaret E. Miller
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Nicholas K. Gikonyo
- Department of Pharmacognosy, Pharmaceutical Chemistry and Pharmaceutical & Industrial Pharmacy, Kenyatta University, Nairobi, Kenya
| | - Paul K. Mbugua
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - Paul O. Okemo
- Department of Microbiology, Kenyatta University, Nairobi, Kenya
| | - David L. Williams
- Department of Microbial Pathogens & Immunity, Rush University Medical Center Chicago IL, USA
| | - Timothy J. Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|