1
|
Zamanian Z, Tajbakhsh E, Arbab Soleimani N, Ghasemian A. Aqueous extract-mediated green synthesis of CuO nanoparticles: Potential anti-tuberculosis agents. Food Sci Nutr 2024; 12:5907-5921. [PMID: 39139956 PMCID: PMC11317747 DOI: 10.1002/fsn3.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 08/15/2024] Open
Abstract
The emergence of drug-resistant strains in tuberculosis treatment underscores the urgency for novel therapeutic approaches. This study investigates the anti-tuberculosis activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using garlic and astragalus extracts. The physicochemical characterization of the nanoparticles confirms successful synthesis, followed by assessment of their antibacterial properties and safety profile. Rats infected with Mycobacterium tuberculosis are treated with nanocomposites derived from garlic extract at doses of 50 mg/kg and 100 mg/kg body weight. Evaluation includes the analysis of Early secreted antigenic target of 6 kDa (ESAT-6) expression and confirmation of antibodies through molecular assays. Administration of garlic and nanocomposites demonstrates significant inhibitory effects on tuberculosis progression in rats, validated by safety assessments and antibacterial efficacy. Notably, the 100 mg/kg dosage exhibits pronounced mitigation of tuberculosis-induced oxidative stress and lung damage. In conclusion, the combined administration of garlic extracts and green-synthesized nanocomposites shows promising efficacy in reducing tuberculosis infection, highlighting a potential avenue for anti-tuberculosis interventions.
Collapse
Affiliation(s)
- Zohreh Zamanian
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - AbdolMajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
2
|
Mohammadjani N, Ashengroph M, Abdollahzadeh J. Untargeted metabolomics and molecular docking studies on green silver nanoparticles synthesized by Sarocladium subulatum: Exploring antibacterial and antioxidant properties. CHEMOSPHERE 2024; 355:141836. [PMID: 38561160 DOI: 10.1016/j.chemosphere.2024.141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The biological synthesis of silver nanoparticles (Ag-NPs) with fungi has shown promising results in antibacterial and antioxidant properties. Fungi generate metabolites (both primary and secondary) and proteins, which aid in the formation of metal nanoparticles as reducing or capping agents. While several studies have been conducted on the biological production of Ag-NPs, the exact mechanisms still need to be clarified. In this study, Ag-NPs are synthesized greenly using an unstudied fungal strain, Sarocladium subulatum AS4D. Three silver salts were used to synthesize the Ag-NPs for the first time, optimized using a cell-free extract (CFE) strategy. Additionally, these NPs were assessed for their antimicrobial and antioxidant properties. Various spectroscopic and microscopy techniques were utilized to confirm Ag-NP formation and analyze their morphology, crystalline properties, functional groups, size, stability, and concentrations. Untargeted metabolomics and proteome disruption were employed to explore the synthesis mechanism. Computational tools were applied to predict metabolite toxicity and antibacterial activity. The study identified 40 fungal metabolites capable of reducing silver ions, with COOH and OH functional groups playing a pivotal role. The silver salt type impacted the NPs' size and stability, with sizes ranging from 40 to 52 nm and zeta potentials from -0.9 to -30.4 mV. Proteome disruption affected size and stability but not shape. Biosynthesized Ag-NPs using protein-free extracts ranged from 55 to 62 nm, and zeta potentials varied from -18 to -27 mV. Molecular docking studies and PASS results found no role for the metabolome in antibacterial activity. This suggests the antibacterial activity comes from Ag-NPs, not capping or reducing agents. Overall, the research affirmed the vital role of specific reducing metabolites in the biosynthesis of Ag-NPs, while proteins derived from biological extracts were found to solely affect their size and stability.
Collapse
Affiliation(s)
- Navid Mohammadjani
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
3
|
P K, K S, M A, Egbuna C. Preparation of bio-synthesized Ag nanoparticles and assessment of their antidiabetic and antioxidant potential against STZ-induced diabetic albino rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:535-558. [PMID: 38234041 DOI: 10.1080/09205063.2024.2301808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Bio-synthesized silver nanoparticles (AgNPs) were successfully obtained using the leaf extract from Ventilago maderaspatana. Extensive analysis was conducted to evaluate the physical and chemical characteristics of the bioderived AgNPs. XRD analysis confirmed their cubic structure, and revealed a well-defined size distribution with average crystallite size of 11.7 nm. FE-SEM and TEM images visually supported the observed size range. The presence of plant-mediated phytochemicals on the surface of AgNPs was confirmed through DLS, FTIR, and TGA/DTA studies. To assess their antidiabetic potential, rats were induced with streptozotocin, resulting in elevated levels of biochemical parameters associated with diabetes. Conversely, serum insulin levels (2.50 ± 0.55) and glucokinase activity (64.50 ± 8.66) decreased. However, treatment with AgNPs demonstrated a dose-dependent reduction in blood glucose, total protein, albumin, and HbA1c levels, effectively restoring them to normal ranges. Moreover, the treatment significantly increased insulin levels (7.55 ± 0.63) and glucokinase activity (121.50 ± 4.60), indicating the antidiabetic potential of V. maderaspatana-mediated AgNPs. Notably, the exitance of phytochemicals, like flavonoids and phenols, on the surface of AgNPs facilitated their ability to neutralize reactive oxygen species (ROS) through electron donation. This property enhanced their overall antidiabetic efficiency.
Collapse
Affiliation(s)
- Karuppannan P
- PG & Research Department of Zoology, Vivekanandha College for Women, Thiruchengodu, Tamilnadu, India
| | - Saravanan K
- PG and Research Department of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - Ashokkumar M
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Chukwuebuka Egbuna
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Igbariam, Nigeria
| |
Collapse
|
4
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Rasheed H, Ahmed S, Sharma A. Changing Trends Towards Herbal Supplements: An Insight into Safety and Herb-drug Interaction. Curr Pharm Biotechnol 2024; 25:285-300. [PMID: 37464829 DOI: 10.2174/1389201024666230718114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
Herbs have been used as sustenance and medicine for a very long time, often in conjunction with other prescribed medications. Even though they are thought to be natural and secure, many of these herbs can interact with other medications and cause potentially dangerous adverse effects or decrease the benefits of the medication. The complex and diverse pharmacological functions carried out by the active ingredients in herbs unavoidably alter the pharmacokinetics of chemical drugs when administered in vivo. Drug transporter expression has a direct impact on how medications are absorbed, distributed, metabolized, and excreted in living organisms. Changes in substrate pharmacokinetics can affect the effectiveness and toxicity of a drug when the active ingredients of a herb inhibit or stimulate the expression of transporters. By reviewing published clinical and preclinical studies, this review aims to raise awareness of herbdrug interactions and discuss their evidence-based mechanisms and clinical consequences. More clinical information on herb-drug interactions is required to make choices regarding patient safety as the incidence and severity of herb-drug interactions are rising due to an increase in the use of herbal preparations globally.This review seeks to increase understanding of herb-drug interactions and explore their evidence-based mechanisms and clinical implications by reviewing published clinical and preclinical studies. The incidence and severity of herb-drug interactions are on the rise due to an increase in the use of herbal preparations worldwide, necessitating the need for more clinical data on these interactions in order to make decisions regarding patient safety. Healthcare workers and patients will become more alert to potential interactions as their knowledge of pharmacokinetic herb-drug interactions grows. The study's objective is to raise readers' awareness of possible interactions between herbal supplements and prescription medications who regularly take them.
Collapse
Affiliation(s)
- Haamid Rasheed
- Department of Quality Assurance, Indo Soviet Friendship (ISF), College of Pharmacy, Moga, 142001, Punjab, India
| | - Suhail Ahmed
- Department of Quality Assurance, Indo Soviet Friendship (ISF), College of Pharmacy, Moga, 142001, Punjab, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut, 250005, U.P., India
| |
Collapse
|
6
|
Jithendra P, Mohamed JMM, Annamalai D, Al-Serwi RH, Ibrahim AM, El-Sherbiny M, Rajam AM, Eldesoqui M, Mansour N. Biopolymer collagen-chitosan scaffold containing Aloe vera for chondrogenic efficacy on cartilage tissue engineering. Int J Biol Macromol 2023; 248:125948. [PMID: 37482169 DOI: 10.1016/j.ijbiomac.2023.125948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The chondrogenic efficacy of aloe vera blended collagen-chitosan (COL-CS-AV) porous scaffold was investigated using articular chondrocytes in a standard condition. Cytocompatibility was analyzed using fluorescent dyes (calcein AM/ethidium bromide) and the viable cells were quantified by MTT assay. Glycosaminoglycan (GAG) content of ECM was estimated by using 1, 9-Dimethyl methylene Blue (DMMB). The total RNA content was quantified and the cartilage specific genes (col2a1, Acan) were amplified by reverse transcription-PCR from the cell lysate of the scaffolds. Histological examination was made using Haematoxylin and Eosin (H&E), safranin-O, masson's trichrome, alcian blue, and alizarin red to stain the specific component of ECM secreted on the construct. The cartilage specific collagen type II was estimated by immunohistochemistry using monoclonal type II collagen antibody. The results of these studies proved that COL-CS-AV scaffold has more chondrogenic efficacy than COL-CS, thus the aloe vera blend COL-CS-AV scaffold might be used as suitable candidate for cartilage tissue engineering.
Collapse
Affiliation(s)
- Panneerselvam Jithendra
- Department of Biotechnology, CSIR-Central Leather Research Institute, Chennai 600020, India; Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | | | - Dinesh Annamalai
- Centre for Academic and Research Excellence, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Abraham Merlin Rajam
- Medical Research center, Women's wellness Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nimer Mansour
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
7
|
Gahtani RM, Alqahtani A, Alqahtani T, Asiri SA, Mohamed JMM, Venkatesa Prabhu S, Muluneh EY. 5-Fluorouracil-Loaded PLGA Nanoparticles: Formulation, Physicochemical Characterisation, and In VitroAnti-Cancer Activity. Bioinorg Chem Appl 2023; 2023:2334675. [PMID: 37102134 PMCID: PMC10125733 DOI: 10.1155/2023/2334675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
The major goal of this investigation was to prepare a drug delivery of polymeric nanoparticles (NPs) from 5-fluorouracil (FU) that could be delivered intravenously and improve the therapeutic index of the FU. In order to achieve this, interfacial deposition method was used to prepare FU entrapped poly-(lactic-co-glycolic acid) nanoparticles (FU-PLGA-NPs). The influence of various experimental settings on the effectiveness of FU integration into the NPs was assessed. Our findings show that the technique used to prepare the organic phase and the ratio of the organic phase to the aqueous phase had the greatest impact on the effectiveness of FU integration into NPs. The results show that the preparation process produced spherical, homogenous, negatively charged particles with a nanometric size of 200 nm that are acceptable for intravenous delivery. A quick initial release over 24 h and then slow and steady release of FU from the formed NPs, exhibiting a biphasic pattern. Through the human small cell lung cancer cell line (NCI-H69), the in vitro anti-cancer potential of the FU-PLGA-NPs was evaluated. It was then associated to the in vitro anti-cancer potential of the marketed formulation Fluracil®. Investigations were also conducted into Cremophor-EL (Cre-EL) potential activity on live cells. The viability of NCI-H69 cells was drastically reduced when they were exposed to 50 µg·mL-1 Fluracil®. Our findings show that the integration of FU in NPs significantly increases the drug cytotoxic effect in comparison to Fluracil®, with this potential effect being particularly important for extended incubation durations.
Collapse
Affiliation(s)
- Reem M. Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | | | - S. Venkatesa Prabhu
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Endalew Yaze Muluneh
- Department of Industrial Chemistry, College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Dilbar S, Sher H, Binjawhar DN, Ali A, Ali I. A Novel Based Synthesis of Silver/Silver Chloride Nanoparticles from Stachys emodi Efficiently Controls Erwinia carotovora, the Causal Agent of Blackleg and Soft Rot of Potato. Molecules 2023; 28:molecules28062500. [PMID: 36985472 PMCID: PMC10058436 DOI: 10.3390/molecules28062500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the biological synthesis of silver nanoparticles has captured researchers’ attention due to their unique chemical, physical and biological properties. In this study, we report an efficient, nonhazardous, and eco-friendly method for the production of antibacterial silver/silver chloride nanoparticles utilizing the leaf extract of Stachys emodi. The synthesis of se-Ag/AgClNPs was confirmed using UV-visible spectroscopy, DPPH free radical scavenging activity, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). An intense peak absorbance was observed at 437 nm from the UV-visible analysis. The Stachys emodi extract showed the highest DPPH scavenging activity (89.4%). FTIR analysis detected various bands that indicated the presence of important functional groups. The SEM morphological study revealed spherical-shaped nanoparticles having a size ranging from 20 to 70 nm. The XRD pattern showed the formation of a spherical crystal of NPs. The antibacterial activity performed against Erwinia carotovora showed the maximum inhibition by centrifuged silver nanoparticles alone (se-Ag/AgClNPs) and in combination with leaf extract (se-Ag/AgClNPs + LE) and leaf extract (LE) of 98%, 93%, and 62% respectively. These findings suggested that biosynthesized NPs can be used to control plant pathogens effectively.
Collapse
Affiliation(s)
- Shazia Dilbar
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Aravind M, Kumarisubitha T, Ahmed N, Velusamy P. DFT, Molecular docking, Photocatalytic and Antimicrobial activity of coumarin enriched Cinnamon barkextract mediated silver nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Al-Serwi RH, El-Sherbiny M, Kumar TVA, Qasim AA, Khattar T, Alghazwani Y, Alqahtani A, Krishnaraju V, Muthu Mohamed JM, Sundramurthy VP. Molecular Docking and Green Synthesis of Bioinorganic TiO 2 Nanoparticles against E.coli and S.aureus. Bioinorg Chem Appl 2022; 2022:1142727. [PMID: 36285040 PMCID: PMC9588338 DOI: 10.1155/2022/1142727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
This study used a simple solution evaporation approach to make a bioinorganic titanium dioxide (Bi-TiO2) photocatalyst for dye contaminant degradation. A variety of techniques, including X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX), and differential reflectance spectroscopy, had been employed to classify the structural and optical properties of the prepared bioinorganic photocatalyst (UV-DRS). Using simulated solar irradiation, the photocatalytic activity of the produced Bi-TiO2 nanoparticles was examined by detecting the degradation of a solution of methylene blue (MB) as a model dye molecule. The developed Bi-TiO2 photocatalyst demonstrates superior photocatalytic action than commercially available powder TiO2, according to photo-degradation experiments. E.coli and S.aureus bacterial strains were employed to assess the antibacterial activity of Bi-TiO2 nanoparticles. The most active molecules that gain antibacterial activity were examined in isolated or extracted components from the tulsi plant. The chosen compounds were docked with thymidylate kinase (TMPK), a potential therapeutic goal for the preparation of novel antibacterial drugs with the PDB ID of 4QGG. Five compounds, namely rosmarinic acid, vicenin-2, orientin, vitexin, and isoorientin, out of the 27 chosen compounds, showed a higher docking score and may aid in boosting antibacterial activity. The synthesized Bi-TiO2 nanoparticles produced antibacterial activity that was effective against Gram-positive bacteria. The nanomaterials that have been synthesized have a lot of potential in wastewater treatment and biomedical management technologies.
Collapse
Affiliation(s)
- Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - T. V. Ajay Kumar
- Azidus Laboratories Ltd., Rathinamangalam, Chennai 600048, Tamil Nadu, India
| | - Abdulmalik Abdulghani Qasim
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Thekra Khattar
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Venkatesan Krishnaraju
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | | | - Venkatesa Prabhu Sundramurthy
- Centre of Excellence for Bioprocess and Bio Technology, Department of Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Polymeric ethosomal gel loaded with nimodipine: Optimisation, pharmacokinetic and histopathological analysis. Saudi Pharm J 2022; 30:1603-1611. [DOI: 10.1016/j.jsps.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
|
12
|
Zafar N, Uzair B, Menaa F, Khan BA, Niazi MBK, Alaryani FS, Majrashi KA, Sajjad S. Moringa concanensis-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO 2/Fe 2O 3/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant E. coli Strains of Livestock Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14081719. [PMID: 36015345 PMCID: PMC9412270 DOI: 10.3390/pharmaceutics14081719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Multidrug resistant MDR bacterial strains are causing fatal infections, such as mastitis. Thus, there is a need for the development of new target-oriented antimicrobials. Nanomaterials have many advantages over traditional antibiotics, including improved stability, controlled antibiotic release, targeted administration, enhanced bioavailability, and the use of antibiotic-loaded nanomaterials, such as the one herein reported for the first time, appear to be a promising strategy to combat antibiotic-resistant bacteria. The use of rationally designed metallic nanocomposites, rather than the use of single metallic nanoparticles (NPs), should further minimize the bacterial resistance. Aim: Green synthesis of a multimetallic/ternary nanocomposite formed of silver (Ag), titanium dioxide (TiO2), and iron(III) oxide (Fe2O3), conjugated to chitosan (CS), in which the large spectrum fluoroquinolone antibiotic ciprofloxacin (CIP) has been encapsulated. Methods: The metallic nanoparticles (NPs) Ag NPs, TiO2 NPs, and Fe2O3 NPs were synthesized by reduction of Moringa concanensis leaf aqueous extract. The ternary junction was obtained by wet chemical impregnation technique. CIP was encapsulated into the ternary nanocomposite Ag/TiO2/Fe2O3, followed by chitosan (CS) conjugation using the ionic gelation method. The resulting CS-based nanoparticulate drug delivery system (NDDS), i.e., CIP-Ag/TiO2/Fe2O3/CS, was characterized in vitro by gold standard physical techniques such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy. Pharmacological analyses (i.e., LC, EE, ex-vivo drug release behavior) were also assessed. Further, biological studies were carried out both ex vivo (i.e., by disk diffusion method (DDM), fluorescence-activated single cell sorting (FACS), MTT assay) and in vivo (i.e., antibacterial activity in a rabbit model, colony-forming unit (CFU) on blood agar, histopathological analysis using H&E staining). Results: The encapsulation efficiency (EE) and the loading capacity (LC) of the NDDS were as high as 94% ± 1.26 and 57% ± 3.5, respectively. XRD analysis confirmed the crystalline nature of the prepared formulation. FESEM revealed nanorods with an average diameter of 50−70 ± 12 nm. FTIR confirmed the Fe-O-Ti-CS linkages as well as the successful encapsulation of CIP into the NDDS. The zeta potential (ZP) of the NDDS was determined as 85.26 ± 0.12 mV. The antimicrobial potential of the NDDS was elicited by prominent ZIs against MDR E. coli (33 ± 1.40 mm) at the low MIC of 0.112 μg/mL. Morphological alterations (e.g., deformed shape and structural damages) of MDR pathogens were clearly visible overtime by FESEM after treatment with the NDDS at MIC value, which led to the cytolysis ultimately. FACS analysis confirmed late apoptotic of the MDR E. coli (80.85%) after 6 h incubation of the NDDS at MIC (p < 0.05 compared to untreated MDR E. coli used as negative control). The highest drug release (89% ± 0.57) was observed after 8 h using PBS medium at pH 7.4. The viability of bovine mammary gland epithelial cells (BMGE) treated with the NDDS remained superior to 90%, indicating a negligible cytotoxicity (p < 0.05). In the rabbit model, in which infection was caused by injecting MDR E. coli intraperitoneally (IP), no colonies were detected after 72 h of treatment. Importantly, the histopathological analysis showed no changes in the vital rabbit organs in the treated group compared to the untreated group. Conclusions: Taken together, the newly prepared CIP-Ag/TiO2/Fe2O3/CS nanoformulation appears safe, biocompatible, and therapeutically active to fight MDR E. coli strains-causing mastitis.
Collapse
Affiliation(s)
- Naheed Zafar
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
- Correspondence: (B.U.); (F.M.)
| | - Farid Menaa
- Department of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
- Correspondence: (B.U.); (F.M.)
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Fatima S. Alaryani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Shamaila Sajjad
- Department of Physics, International Islamic University, Islamabad 44000, Pakistan
| |
Collapse
|
13
|
In Vitro Physical Characterizations and Docking Studies on Carvedilol Nanocrystals. CRYSTALS 2022. [DOI: 10.3390/cryst12070988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The major goal of this investigation was to prepare carvedilol nanocrystals (CRL-NCs) for better solubility, stability, and bioavailability. Using polyvinyl pyrolidine K-30 (PVP) and sodium dodecyl sulphate (SDS) as stabilisers, CRL-NCs were effectively synthesised by emulsion-diffusion, followed by the high-pressure homogenization (HPH) method. The AL classes of phase solubility curves with ideal complexes produced with stabilisers were estimated by thermodynamic parameters. The docking study was performed with the active site of a β-1 adrenoreceptor protein, and the CRLs docking score was revealed as −23.481 Kcal/mol−1. At 25 and 37 °C, the optimum interaction constant was determined for PVP (144 and 176 M−1) and SDS (102 and 121 M−1). The average particle size (PS) of the produced stable CRL-NCs is 58 nm, with a zeta potential of −27.2 ± 2.29 mV, a poly dispersibility index of 0.181 ± 0.012, a percentage yield of 78.7 ± 3.41, drug content of 96.81 ± 3.64%, and entrapment efficiency of 83.61 ± 1.80%. The morphological data also reveals that the CRL-NCs were nearly sphere shaped, with distinct and smooth surfaces. CRL-NCs were studied using X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC), and the results show no chemical structural alterations, even when PS was reduced. NCs accelerate their in vitro dissolution release rate by about three times faster than CRL-MCs (microcrystals). When kept at 4 °C, the CRL-NCs exhibit good physical stability for six months. As a result, the CRL-NCs created via emulsion-diffusion followed by HPH with stabilisers can be used to increase the solubility, stability, and bioavailability of poorly soluble or lipophilic drugs.
Collapse
|
14
|
Mohamed JMM, Mahajan N, El-Sherbiny M, Khan S, Al-Serwi RH, Attia MA, Altriny QA, Arbab AH. Ameliorated Stomach Specific Floating Microspheres for Emerging Health Pathologies Using Polymeric Konjac Glucomannan-Based Domperidone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3670946. [PMID: 35872840 PMCID: PMC9300317 DOI: 10.1155/2022/3670946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The goal of this study was to use polymeric konjac glucomannan (KGM), Kollidon VA 64 (KVA64), and glutaraldehyde to ameliorate stomach specific floating microspheres (SSFM) using domperidone (DoN) to increase in vivo bioavailability and emerging health pathologies. The SSFM were made using the emulsion cross-linking process, and the polymer was chosen based on its ability to get cross-linked. The thermodynamic parameters were used to determine the AL classes of phase solubility curves using ideal complexes produced with KVA64. The optimal interaction constants at 25 and 37°C were found to be 116.14 and 128.05 M-1, respectively. The prepared SSFM had an average particle size (PS) of 163.71 ± 2.26 mm and a drug content of 96.66 ± 0.32%. It can be determined from in vitro drug release experiments that drug release is good in terms of regulated drug release after 12 h (92.62 ± 2.43%). The SSFMs were approximately sphere-shaped and had smooth surfaces, according to the morphological data. SSFMs were investigated using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and no chemical structural changes were identified. The SSFMs produces a considerable gastric residence time with optimal DoN release and absorption in stomach fluid, and the mean residence time (17.36 ± 1.4 h) and t 1/2 (10.47 ± 0.6 h) were considerably longer (p < 0.05) than those obtained following i.v. treatment (MRT = 8.42 ± 1.2 h; t 1/2 = 9.07 ± 0.7 h). The SSFMs maintained good physical stability for three months when stored at room temperature.
Collapse
Affiliation(s)
| | - Nikita Mahajan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shagufta Khan
- Institute of Pharmaceutical Education and Research, Borgaon (Meghe), Wardha, Maharashtra 442 001, India
| | - Rasha Hamed Al-Serwi
- Department of Basic Medical Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Attia
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Qamar Alsayed Altriny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| |
Collapse
|
15
|
Muthu Mohamed JM, Kavitha K, Ahmad F, Sherbiny ME, Ebrahim D, EL-Sagheer AM, Ebrahim HA, Abdelmonem Elsherbini DM, Ebrahim Abdelrahman MA, Dejene M. Curcumin Plant for Colorectal Cancer Prediction and Prevention Using In Silico Molecular Analysis; HOT-MELT Extrusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4376960. [PMID: 35783520 PMCID: PMC9246566 DOI: 10.1155/2022/4376960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
The impact of a soluble complex (SC) of curcumin (CuR) synthesized using hot melt (HM) and hot-melt extrusion (HE) technologies on adenocarcinoma cells for the treatment of colorectal cancer by enhancing CuR solubility is investigated in this work. In silico molecular modelling, solubility, drug release, and physicochemical analysis were all part of the phase solubility (PS) study, which featured a novel dyeing test and a central composite design to optimize the best complex (CDD). The optimal HE-SC (1 : 5) enhances solubility (0.8521 ± 0.016 mg·mL-1) and dissolution (91.87 ± 0.208% at 30 min), and it has an ideal stability constant (309 and 377 M-1) at 25 and 37°C and an AL type of isotherm, implying 1 : 1 stoichiometry according to the findings. An intermolecular hydrogen bond that has not undergone any chemical change and has resulted in the complete conversion of the amorphous form aids in the creation of SC. In vitro cytotoxicity was measured at IC50 on the SW480 (72 M·mL-1) and Caco-2 (40 M·mL-1) cells. According to apoptotic studies, apoptosis was responsible for the vast majority of cell death, with necrosis accounting for a small proportion of the total. In vivo toxicity was established using a zebrafish model, and a western blot examination revealed apoptosis at the molecular level. It was argued that the novel formulations developed using HE technology are more significant and effective than existing pure CuR formulations.
Collapse
Affiliation(s)
- Jamal Moideen Muthu Mohamed
- College of Pharmacy, Shri Indra Ganesan Institute of Medical Science, Manikandam, Tiruchirapalli 620012, Tamil Nadu, India
| | - Karuppaiyan Kavitha
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences, Jubail, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail, Saudi Arabia
| | - Mohamed El Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 1666, Riyadh 11597, Saudi Arabia
| | - Doaa Ebrahim
- Department of Respiratory Care, College of Applied Medical Sciences, Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aida M. EL-Sagheer
- Department of Neuroscience, College of Applied Medical Sciences, Jubail, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Minilu Dejene
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Mohamed JMM, Ahamad F, El-Sherbiny M, Ebrahim HA, Eladl MA, Dawood AF, Khader STSA, Kavitha K, Teressa DM. An Ideal Approach for Enhancing 5-Fluorouracil Anticancer Efficacy by Nanoemulsion for Cytotoxicity against a Human Hepatoma Cell Line (HepG2 Cells). BIOMED RESEARCH INTERNATIONAL 2022; 2022:4094132. [PMID: 35757481 PMCID: PMC9232351 DOI: 10.1155/2022/4094132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
The core objectives of the research were to prepare 5-fluorouracil nanoemulsion (FU-NE) and to evaluate the physiochemical properties and to study the in vitro antiproliferation in HepG2 cell lines. The physiochemical parameters determined were compatibility, particle size (PS), polydispersity index (PDI), zeta potential (ZP), density, surface tension (ST), pH, viscosity, in vitro release of FU, cytotoxicity, and apoptosis study. The prepared FU-NE3 was stable, sterile, and homogeneous. On the HepG2 (120 μg.mL-1) cells, in vitro cytotoxicity was obtained at IC50 concentration. Apoptosis examination by AO/EBand Hoechst staining shows that the majority of cell demise was caused by apoptosis, with a tiny fraction of necrosis. Hence, this investigation concluded that the developed FU-NE has now desirable characteristics for drug delivery to the cancer cell and may be screened for the in vivo colorectal anticancer activity.
Collapse
Affiliation(s)
- Jamal Moideen Muthu Mohamed
- College of Pharmacy, Shri Indra Ganesan Institute of Medical Science, Manikandam, Tiruchirapalli, 620012 Tamil Nadu, India
| | - Fazil Ahamad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - S. T. Sheik Abdul Khader
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli, 620024 Tamil Nadu, India
| | - Karuppaiyan Kavitha
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli, 620024 Tamil Nadu, India
| | - Dawit Mamiru Teressa
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Senthilvel CK, Karuppaiyan K, Pothumani A, Vedharethinam A, Jose AW, Muthu Mohamed JM, Sherbiny ME, Ebrahim HA, Shafey ME, Dejene M. Development of Atorvastatin Calcium Biloaded Capsules for Oral Administration of Hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4995508. [PMID: 35615690 PMCID: PMC9126722 DOI: 10.1155/2022/4995508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
The goal of this study was to develop atorvastatin (ATN) calcium biloaded, i.e., immediate release (IR) and sustained release (SR) capsules that would promote the quick onset of action and a better dissolution profile on both the IR and SR aspects. The IR granules were prepared by the wet granulation method, and an aqueous solubility study proved that the IR granules released the ATN within 25 min compared to the pure drug due to the addition of PEG and super disintegrants such as croscarmellose (CC) and crospovidone (CP). The sustained release nanoparticles (SR-NPs) were synthesized using a solvent evaporation technique and an optimal combination of hydrophilic and hydrophobic polymers. The addition of a hydrophobic polymer to a hydrophilic polymer delays drug release, resulting in a sustained and controlled release lasting up to 12 hours. The drug release of ATN from SR nanoparticles followed the Higuchi and Korsmeyer-Peppas models and had first-order kinetics (r2 = ???). Fourier transform infrared spectrophotometry, powder X-ray diffraction, and differential scanning calorimetric analysis were used to test the prepared biloaded capsules, and the results showed that there was no significant interaction between the polymers, excipients, and drug. The SEM and DLS analysis clearly demonstrated that drug particles in a continuous layer were enclosed by polymers at the nanoscale. To summarise, integrating both layers into a single capsule resulted in a superior release profile and patient compliance. Finally, prepared biloaded capsules were discovered to exhibit both an IR and an SR profile.
Collapse
Affiliation(s)
| | - Kavitha Karuppaiyan
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Ananth Pothumani
- K. M. College of Pharmacy, Madurai 625107, Melur Road, Uthangudi, Tamil Nadu, India
| | | | - Ancy Wilfred Jose
- K. M. College of Pharmacy, Madurai 625107, Melur Road, Uthangudi, Tamil Nadu, India
| | - Jamal Moideen Muthu Mohamed
- College of Pharmacy, Shri Indra Ganesan Institute of Medical Science, Tiruchirappalli 620012, Tamil Nadu, India
| | - Mohamed El Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, P.O. Box 71666, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, P.O. Box 84428, Saudi Arabia
| | - Mohamed El Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Minilu Dejene
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|