1
|
Park SH, Park YJ, Kim KY, Kim JS. Guaijaverin And Epigallocatechin Gallate Exerts Antiinflammatory And Antiallergenic Effects Through Interleukin-12 Production. J Med Food 2024; 27:1050-1061. [PMID: 39229731 DOI: 10.1089/jmf.2024.k.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Our aim in the current study was to determine the in vitro and in vivo synergistic antiinflammatory and antiallergic effect associated with the IL-12 production of guaijaverin and epigallocatechin gallate (EGCG) complex (GEC) and ILS-F-2301 (2:8 extract of Psidium guajava and Camellia sinensis). Compared to EGCG alone, GEC showed synergistic inhibition of nitric oxide (NO), inducible NO synthase, and cyclooxygenase-2 by 3.8, 5.1, and 4.1%, respectively. The downregulation of interleukin-12 (IL-12) by 2,4-dinitrophenyl-human serum albumin conjugate/DNP-immunoglobulin E or ovalbumin (OVA) was synergistically increased by GEC by about 7.5% or 5.4% compared to EGCG alone. The level of downregulation of IL-12 in plasma increased by 100 mg/kg with ILS-F-2301 (28.7%) when compared to the OVA/Alu-treated group. Also, GEC synergistically increased by GEC by about 7.5% or 5.4% compared to EGCG alone. The level of down and cyclooxygenase C synergistically inhibited p-Akt, PI3K, mTOR, p-STAT6, and GATA3 by 4.9%, 4.1%, 19.2%, 23.8%, and 35.3%, respectively, while increasing the expressions of p-STAT1 and T-bet (showing 53.3% and 9.4% activation) when compared to EGCG alone. In an allergenic rhinitis mouse model, 100 mg/kg of ILS-F-2301 was shown to inhibit p-Akt, PI3K, mTOR, p-c-Jun N-terminal kinase (p-JNK), p-extracellular signal-regulated kinase (p-ERK), and p-p38 by 23.3%, 43.8%, 17.2%, 32.2%, 29.1%, and 41.8% when compared to the OVA/Alu-sensitized group. Taken together, our findings suggest that ILS-F-2301 may have potential as a functional food for alleviating antiallergic rhinitis.
Collapse
Affiliation(s)
- Se-Ho Park
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| | - Yu Jin Park
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| | | | - Jin Soo Kim
- R&D Center, Il Seong Co., Ltd., Daegu, Korea
| |
Collapse
|
2
|
Zhang Y, Chen L, Ouyang H. Shikonin alleviates asthma phenotypes in mice via an airway epithelial STAT3-dependent mechanism. Open Med (Wars) 2024; 19:20241016. [PMID: 39444792 PMCID: PMC11497215 DOI: 10.1515/med-2024-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Asthma is an inflammatory disease where the balance between Th1/Th2 and Th17/Treg plays a crucial role in its pathogenesis. Shikonin is used to treat a variety of autoimmune diseases due to its good anti-inflammatory activity. However, the effect and mechanism of shikonin on asthma remain unknown. Method Mice were sensitized with ovalbumin (OVA)/house dust mite (HDM) and treated with shikonin. Lung inflammation was assessed histologically and via flow cytometry. Bronchoalveolar lavage fluid (BALF) was analyzed for cell counts and cytokines. Shikonin's impact on p-STAT3 was studied in vivo and in vitro. Results Shikonin inhibited OVA or HDM-induced inflammation and airway hyperresponsiveness. Upon treatment, a restoration of the Th1/Th2 and Th17/Treg balance was observed, evidenced by a reduction in IL-4 and IL-17A levels in BALF, alongside an elevation in interferon-gamma and IL-10. Furthermore, shikonin impeded the infiltration of eosinophils, neutrophils, macrophages, and lymphocytes into lung tissue. The observed decrease in STAT3 phosphorylation and diminished nuclear translocation of p-STAT3 confirmed that shikonin promotes the balance of Th1/Th2 and Th17/Treg by regulating airway epithelial STAT3. Conclusion Shikonin mitigates asthma symptoms through a STAT3-dependent mechanism, indicating its potential as an anti-asthmatic therapeutic agent.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, Xi’an, 710101, China
| | - Lizhan Chen
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, Xi’an, 710101, China
| | - Haifeng Ouyang
- Department of Respiratory Medicine, Xi’an International Medical Center Hospital, No. 777 Xitai Road, Xi’an, 710101, China
| |
Collapse
|
3
|
Ruan H, Long M, Li J, Zhang D, Feng N, Zhang Y. Sustained-Release Hydrogen-Powered Bilateral Microneedles Integrating CD-MOFs for In Situ Treating Allergic Rhinitis. Adv Healthc Mater 2024; 13:e2400637. [PMID: 38749484 DOI: 10.1002/adhm.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Glucocorticoids are widely used for treating allergic rhinitis, but conventional intranasal administration encounters unfavorable nasal cilia clearance and nasal mucosal barrier. Herein, a bilateral microneedle patch is fabricated for delivering cyclodextrin-based metal-organic frameworks (CD-MOF) encapsulating dexamethasone (DXMS) and paeonol (Pae), while NaH particles are mounted on the basal part of each microneedle. By intranasal administration, the microneedles are propelled into the nasal mucosa by NaH-generated hydrogen and then swell to form a hydrogel for sustainedly releasing drugs. The DXMS/Pae combination is demonstrated to be superior to more than the twofold dose of DXMS alone for improving allergic rhinitis in rats. It involves reducing mast cell degranulation and modulating Treg/Th17 cell homeostasis, whereas inhibiting Th1 to Th2 differentiation is associated with regulating the GATA3/T-bet pathway, as well as repairing epithelial barrier function by increasing MUC1 and downregulating periostin. In addition, this delivery system modulates the lipid metabolism of the nasal mucosa. Notably, the newly designed device significantly enhances the drug's therapeutic effect, and NaH-generated hydrogen may have the potential adjunctive therapeutic effect. Collectively, such an emerging microneedle-mediated nasal drug delivery creates a new form for alleviating immune inflammation and contributes a promising solution to reduce clinical glucocorticoid abuse.
Collapse
Affiliation(s)
- Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Meng Long
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Di Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| |
Collapse
|
4
|
Li P, Hon SSM, Tsang MSM, Kan LLY, Lai AYT, Chan BCL, Leung PC, Wong CK. Integrating 16S rRNA Sequencing, Microflora Metabolism, and Network Pharmacology to Investigate the Mechanism of SBL in Alleviating HDM-Induced Allergic Rhinitis. Int J Mol Sci 2024; 25:8655. [PMID: 39201342 PMCID: PMC11354307 DOI: 10.3390/ijms25168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 09/02/2024] Open
Abstract
Allergic rhinitis (AR) is a series of allergic reactions to allergens in the nasal mucosa and is one of the most common allergic diseases that affect both children and adults. Shi-Bi-Lin (SBL) is the modified formula of Cang Er Zi San (CEZS), a traditional Chinese herbal formula used for treating AR. Our study aims to elucidate the anti-inflammatory effects and mechanisms of SBL in house dust mite-induced AR by regulating gut microflora metabolism. In vivo studies showed that nasal allergies and the infiltration of inflammatory cells in the nasal epithelium were significantly suppressed by SBL. Moreover, SBL restored the impaired nasal epithelial barrier function with an increased tight junction protein expression and reduced the endothelial nitric oxide synthase (eNOS). Interestingly, SBL significantly reconstituted the abundance and composition of gut microbiota in AR mice; it increased the relative abundance of potentially beneficial genera and decreased the relative abundance of harmful genera. SBL also restored immune-related metabolisms, which were significantly increased and correlated with suppressing inflammatory cytokines. Furthermore, a network analysis and molecular docking indicated IL-6 was a possible target drug candidate for the SBL treatment. SBL dramatically reduced the IL-6 level in the nasal lavage fluid (NALF), suppressing the IL-6 downstream Erk1/2 and AKT/PI3K signaling pathways. In conclusion, our study integrates 16S rRNA sequencing, microflora metabolism, and network pharmacology to explain the immune mechanism of SBL in alleviating HDM-induced allergic rhinitis.
Collapse
Affiliation(s)
- Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Sharon Sze-Man Hon
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Yu L, Bi J, Xu B, Yu B, Fu Y. Clinical significance of T helper-1/T helper-2 cytokines in peripheral blood of children with otitis media with effusion and allergic rhinitis. Int J Pediatr Otorhinolaryngol 2024; 182:111996. [PMID: 38879907 DOI: 10.1016/j.ijporl.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Otitis media with effusion (OME) is a prevalent and costly disease, especially in children. This article analyzed the expression patterns and clinical significance of T helper-1 (Th1)/Th2 cytokines in the peripheral blood of children with OME and allergic rhinitis (AR). METHODS Subjects were assigned to the OME + AR group and the Control group (children with OME), with their clinical baseline data documented. The correlations between Th1/Th2 cytokines and between the total nasal symptom score (TNSS) and Th1/Th2 cytokines were analyzed. The risk factors and the predictive value of Th1/Th2 cytokines for OME + AR were analyzed using logistics multivariate regression analysis and receiver operating characteristic curve. RESULTS Significant differences were observed in tympanic pressure/speech frequency/air conduction valve/TNSS score/immunoglobulin E (IgE) level between both groups. The OME + AR children exhibited evidently elevated interleukin-2 (IL-2)/tumor necrosis factor-α (TNF-α)/IL-4/IL-10/IL-6 levels and no significant difference in interferon-γ (IFN-γ) level. Th1/Th2 cytokines were remarkably positively-correlated with the TNSS score. IL-2/TNF-α/IL-4/IL-6 were risk factors for OME with AR. The area under the curves (AUCs) of IL-6/IL-2/IL-4/TNF-α levels in predicting the occurrence of OME + AR were 0.805/0.806/0.775/0.781, with sensitivities of 75.76 %/89.39 %/72.21 %/72.73 % and specificities of 74.29 %/61.34 %/72.86 %/70.00 %, and the cut-off values were 239.600/20.300/29.880/34.800 (pg/mL). The AUC of their combination in predicting OME + AR was 0.955 (93.94 % sensitivity, 85.71 % specificity). CONCLUSION Th1/Th2 cytokine levels were imbalanced and obviously positively-correlated with the TNSS score in OME + AR children. IL-2, TNF-α, IL-4, and IL-6 levels had auxiliary predictive value in the occurrence of OME + AR.
Collapse
Affiliation(s)
- Lulu Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Bi
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Fu
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Zhou Y, Chen B, Fu Y, Wan C, Li H, Wang L, Huang X, Wu Z, Li G, Xiong L, Qin D. Cang-ai volatile oil alleviates nasal inflammation via Th1/Th2 cell imbalance regulation in a rat model of ovalbumin-induced allergic rhinitis. Front Pharmacol 2024; 15:1332036. [PMID: 38835658 PMCID: PMC11148258 DOI: 10.3389/fphar.2024.1332036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yi Fu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunping Wan
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lin Wang
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Lei Xiong
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Dai J, Xia K, Huai D, Li S, Zhou L, Wang S, Chen L. Identification of diagnostic signature, molecular subtypes, and potential drugs in allergic rhinitis based on an inflammatory response gene set. Front Immunol 2024; 15:1348391. [PMID: 38469312 PMCID: PMC10926906 DOI: 10.3389/fimmu.2024.1348391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background Rhinitis is a complex condition characterized by various subtypes, including allergic rhinitis (AR), which involves inflammatory reactions. The objective of this research was to identify crucial genes associated with inflammatory response that are relevant for the treatment and diagnosis of AR. Methods We acquired the AR-related expression datasets (GSE75011 and GSE50223) from the Gene Expression Omnibus (GEO) database. In GSE75011, we compared the gene expression profiles between the HC and AR groups and identified differentially expressed genes (DEGs). By intersecting these DEGs with inflammatory response-related genes (IRGGs), resulting in the identification of differentially expressed inflammatory response-related genes (DIRRGs). Afterwards, we utilized the protein-protein interaction (PPI) network, machine learning algorithms, namely least absolute shrinkage and selection operator (LASSO) regression and random forest, to identify the signature markers. We employed a nomogram to evaluate the diagnostic effectiveness of the method, which has been confirmed through validation using GSE50223. qRT-PCR was used to confirm the expression of diagnostic genes in clinical samples. In addition, a consensus clustering method was employed to categorize patients with AR. Subsequently, extensive investigation was conducted to explore the discrepancies in gene expression, enriched functions and pathways, as well as potential therapeutic drugs among these distinct subtypes. Results A total of 22 DIRRGs were acquired, which participated in pathways including chemokine and TNF signaling pathway. Additionally, machine learning algorithms identified NFKBIA, HIF1A, MYC, and CCRL2 as signature genes associated with AR's inflammatory response, indicating their potential as AR biomarkers. The nomogram based on feature genes could offer clinical benefits to AR patients. We discovered two molecular subtypes, C1 and C2, and observed that the C2 subtype exhibited activation of immune- and inflammation-related pathways. Conclusions NFKBIA, HIF1A, MYC, and CCRL2 are the key genes involved in the inflammatory response and have the strongest association with the advancement of disease in AR. The proposed molecular subgroups could provide fresh insights for personalized treatment of AR.
Collapse
Affiliation(s)
- Jun Dai
- Department of Otorhinolaryngology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - Keyu Xia
- Department of Otorhinolaryngology, The Fifth People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - De Huai
- Department of Otorhinolaryngology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - Shuo Li
- Department of Otorhinolaryngology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - Lili Zhou
- Department of Otorhinolaryngology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - Shoufeng Wang
- Department of Otorhinolaryngology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jingsu, China
| | - Li Chen
- Department of Otorhinolaryngology, People’s Hospital of Hongze District, Huai’an, Jingsu, China
| |
Collapse
|
8
|
韩 飞, 许 肖, 王 英. [Adipose-derived stem cell-derived exosomes regulate Th2/Treg balance in peripheral blood of AR patients through the mTOR pathway]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:140-145. [PMID: 38297868 PMCID: PMC11116130 DOI: 10.13201/j.issn.2096-7993.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 02/02/2024]
Abstract
Objective:To investigate the mechanism of adipose derived stem cell exosomes(ADSC-exos) regulating Th2/Treg balance in peripheral blood of patients with allergic rhinitis(AR). Methods:Thirty patients with AR who were treated in Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University from March 2022 to October 2022 were selected, and 30 patients with simple deviation of nasal septum who were treated in our department during the same period were selected as the control group. 10 mL peripheral venous blood was collected from all patients. The levels of IL-4 and TGF-β in plasma were analyzed by ELISA. PBMCs were isolated by density gradient centrifugation. Then, protein and RNA were further extracted, and the expression levels of IL-4, TGF-β, GATA3 and Foxp3 genes were detected by qRT-PCR. Western Blotting detected p-PI3K(P85), p-AKT(Ser473) in PBMCs of AR patients and healthy controls. Protein expression levels of p-mTOR(Ser2448), p-p70S6K(Thr389), and the proportion of Th2 and Treg cells were analyzed by flow cytometry. PBMCs of AR patients were stimulated to differentiate and co-cultured with exosomes of adipose stem cells. p-PI3K(P85), p-AKT(Ser473), p-mTOR(Ser2448) were detected in exosome treated group and untreated group by Western Blotting. The expression level of p-p70S6K(Thr389) protein, the proportion of Th2 and Treg cells were analyzed by flow cytometry, and the levels of IL-4 and TGF-β in the supernatant of cell culture were detected by ELISA. Results:Compared with the control group, the mTOR pathway in peripheral blood of AR group was significantly activated, the level of IL-4 in plasma was increased, and the level of TGF-β was decreased(P<0.05). Compared with the control group, the proportion of Th2 cells in peripheral blood was increased, and the proportion of Treg cells was decreased(P<0.01). Compared with the untreated group, the expression level of mTOR pathway protein decreased, the level of IL-4 decreased, and the level of TGF-β increased. The proportion of Th2 cells decreased, and the proportion of Treg cells increased(P<0.01). Conclusion:There is an imbalance of Th2 and Treg cells in peripheral blood mononuclear cells of AR patients; the PI3K/AKT/mTOR/p70S6K pathway is activated in peripheral blood mononuclear cells of AR patients Exosomes derived from adipose mesenchymal stem cells may regulate Th2/Treg balance in AR patients through the PI3K/AKT/mTOR/p70S6K pathway.
Collapse
Affiliation(s)
- 飞燕 韩
- 郑州大学第一附属医院耳鼻咽喉头颈外科(郑州,450052)Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - 肖杰 许
- 郑州大学第一附属医院耳鼻咽喉头颈外科(郑州,450052)Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - 英 王
- 郑州大学第一附属医院耳鼻咽喉头颈外科(郑州,450052)Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
9
|
Guo S, Lv Y, Shen J, Li R, Liu H, Fan Y, Tian C. Network Pharmacology Studies on the Molecular Mechanism of Hashimoto's Thyroiditis Treated with Shutiao Qiji Decoction. Comb Chem High Throughput Screen 2024; 27:2899-2911. [PMID: 37929726 DOI: 10.2174/0113862073259714231012070100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND In recent years, the number of patients with Hashimoto's thyroiditis has been increasing, and traditional Chinese medicine ingredients and combinations have been applied to treat Hashimoto's thyroiditis to increase efficacy and reduce side effects during the treatment process. OBJECTIVE Shutiao Qiji Decoction is one of the Chinese traditional medicine prescriptions, which is commonly used to treat cancer, tumor, etc. It is also used for thyroid-related diseases in the clinic. Hashimoto's thyroiditis is an autoimmune disease. In this study, the mechanism of Shutiao Qiji Decoction in treating Hashimoto's thyroiditis was studied through network pharmacology and molecular docking verification. METHOD Each Chinese medicine ingredient of Shutiao Qiji Decoction was retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The related genes of HT were searched from the UniProt and GeneCards databases. Meanwhile, we used Cytoscape to construct the protein-protein interaction (PPI) visual network analysis, and used the search tool to search the database of Interacting Genes (STRING) to build a PPI network. These key proteins were enriched and analyzed by molecular docking validation, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hashimoto's thyroiditis disease model was established in SD rats, and SQD was administered by gavage after the successful establishment of the model. After 6 weeks of continuous administration of the drug by gavage, tissue samples were collected and the thyroid and spleen tissues were visualized by HE staining to verify the therapeutic effect. RESULTS The results showed that there were 287 TCM active ingredients, 1920 HT-related disease targets, and 176 drug and disease targets in SQD. Through PPI analysis, GP analysis, and KEGG analysis of the common targets of drugs and diseases, we found their pathways of action to be mainly cancer action pathway, PI3K-AKT signaling pathway, and T-cell action pathway. The active ingredients of the drugs in SQD, malvidin, stigmasterol, porin-5-en-3bta-ol, and chrysanthemum stigmasterol, were docked with the related target proteins, MAPK, GSK3β, TSHR, and NOTCH molecules. The best binding energies obtained from docking were mairin with TSHR, stigmasterol with TSHR, poriferast-5-en-3beta-ol with MAPK, and chryseriol with GSK3β, with binding energies of -6.84 kcal/mol, -6.53 kcal/mol, -5.03 kcal/mol, and -5.05 kcal/mol, respectively. HE staining sections of rat thyroid and spleen tissues showed that SQD had a therapeutic effect on Hashimoto's thyroiditis and restored its immune function. CONCLUSION It is verified by molecular docking results that Shutiao Qiji Decoction has a potential therapeutic effect on Hashimoto's thyroiditis in the MAPK/TSHR/NOTCH signal pathway, and that the main components, mairin, stigmasterol, poriferast-5-en-3beta-ol, and chryseriol play a role in it. SQD has been shown to have a good therapeutic effect on Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Shuang Guo
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Yan Lv
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Junyu Shen
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Rong Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Haipeng Liu
- The Second Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650216, China
| | - Yuan Fan
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yunnan, 650500, China
| | - Chunhong Tian
- Yunnan Research Institute of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| |
Collapse
|
10
|
Wu S, Yu Y, Zheng Z, Cheng Q. High mobility group box-1: a potential therapeutic target for allergic rhinitis. Eur J Med Res 2023; 28:430. [PMID: 37828579 PMCID: PMC10571310 DOI: 10.1186/s40001-023-01412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Allergic rhinitis (AR) is a prevalent chronic inflammatory disease of the nasal mucosa primarily characterized by symptoms, such as nasal itching, sneezing, runny nose, and nasal congestion. It has a high recurrence rate and low cure rate, with a lack of effective drugs for treatment. The current approach to management focuses on symptom control. High mobility group box-1 (HMGB1) is a highly conserved non-histone protein widely present in the nucleus of eukaryotes. It is recognized as a proinflammatory agent, and recent studies have demonstrated its close association with AR. Here, we will elaborate the role and mechanism of HMGB1 in AR, so as to reveal the potential value of HMGB1 in the occurrence and development of AR, and provide a new target for clinical research on the treatment of AR.
Collapse
Affiliation(s)
- Shuhua Wu
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China
| | - Yangyang Yu
- Department of Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhong Zheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China
| | - Qi Cheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, China.
| |
Collapse
|
11
|
Yang M, Sun L, Zhu D, Meng C, Sha J. Recent advances in understanding the effects of T lymphocytes on mucosal barrier function in allergic rhinitis. Front Immunol 2023; 14:1224129. [PMID: 37771581 PMCID: PMC10523012 DOI: 10.3389/fimmu.2023.1224129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 09/30/2023] Open
Abstract
Allergic rhinitis is a non-infectious chronic inflammatory disease of the nasal mucosa that affects T cells and their cytokines. T cells play significant roles in the development of allergic inflammatory diseases by orchestrating mechanisms underlying innate and adaptive immunity. Although many studies on allergic rhinitis have focused on helper T cells, molecular makeup, and pathogenesis-related transduction pathways, pathological mechanisms have not yet been completely explored. Recent studies have suggested that T cell status may play an important role in the interaction between T cells and the nasal mucosal barrier in allergic rhinitis. This study aimed to explore the interactions between T cells and nasal mucosal barriers in allergic rhinitis and to review the therapeutic modalities of pertinent biological agents involving T cells.
Collapse
Affiliation(s)
- Maolin Yang
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases (20190901003JC), Changchun, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review addresses recent progress in our understanding of the role of regulatory T (Treg) cells in enforcing immune tolerance and tissue homeostasis in the lung at steady state and in directing the immune response in asthmatic lung inflammation. RECENT FINDINGS Regulatory T cells regulate the innate and adaptive immune responses at steady state to enforce immune tolerance in lung tissues at steady state and their control of the allergic inflammatory responses induced by allergens. This regulatory function can break down in the context of chronic asthmatic airway inflammation such that the lung tissue Treg cells become skewed towards a pathogenic phenotype that aggravates and perpetuates disease. Subversion of lung tissue Treg cell function involves their upregulation of Notch4 expression, which in turn acts to amplify T helper type 2 and type 17 and innate lymphoid cell type 2 responses in the airways. SUMMARY A dual role for Treg cells has emerged both as immune regulators but also a potential disease effectors in asthma, with implications for disease therapy.
Collapse
Affiliation(s)
- Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, Technical University Dresden, Germany
| | - Talal A Chatila
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| |
Collapse
|
13
|
Correlation between B-cell lymphoma 6 with the balance of T helper-1/2 and severity of allergic rhinitis. Allergol Immunopathol (Madr) 2023; 51:1-8. [PMID: 36617815 DOI: 10.15586/aei.v51i1.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Allergic rhinitis (AR) is a prevailing immune disorder affecting the nasal mucosa. B-cell lymphoma 6 (BCL6) imposes essential roles in immunity. This study probed into the serum expression of BCL6 and its effect on AR diagnosis and patients' quality of life (QOL). METHODS A total of 113 patients with AR including 38 cases with mild AR (MAR) and 75 cases with moderate-severe AR (MSAR) were enrolled, with 101 healthy people enrolled as control. Serum expression of BCL6 was detected by RT-qPCR and the diagnostic efficacy of BCL6 for AR was analyzed using the receiver operating characteristic curve. The proportion of T helper-1/2 (Th1/Th2) cells in CD4+ T cells in peripheral blood mononuclear cells was detected using flow cytometry. The correlation between BCL6 and Th1/Th2 cells and the effects of BCL6 expression on patients' QOL were assessed by Pearson analysis and Mini-RQLQ questionnaire. RESULTS BCL6 was downregulated in patients with AR, serum BCL6 level < 0.8450 had certain auxiliary diagnostic values for AR, and serum BCL6 level < 0.5400 could assist the diagnosis of AR severity. Th1 cell proportion in CD4+ T cells was decreased, whereas Th2 cell proportion was increased with AR severity. BCL6 was positively-linked with Th1 cells but inversely-correlated with Th2 cells in patients with AR. Patients with AR with low BCL6 expression had a poorer QOL compared with high BCL6 expression. The domains most affected by BCL6 expression were practical problems, nasal symptoms, and lacrimation. CONCLUSION Serum BCL6 is downregulated and low BCL6 expression greatly deteriorates QOL in patients with AR.
Collapse
|
14
|
Deng Z, Zhang X, Wen J, Yang X, Xue L, Ou C, Ma J, Zhan H, Cen X, Cai X, Zhang Y, Chen R, Zhang Q. Lonicerin attenuates house dust mite-induced eosinophilic asthma through targeting Src/EGFR signaling. Front Pharmacol 2022; 13:1051344. [PMID: 36618942 PMCID: PMC9817108 DOI: 10.3389/fphar.2022.1051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eosinophilic asthma is the predominant phenotype of asthma, and although these patients are sensitive to glucocorticoid therapy, they also experience many side effects. Lonicerin is a kind of bioflavonoid isolated from the Chinese herb Lonicera japonica Thunb, which has anti-inflammatory and immunomodulatory effects. The aim of this study was to elucidate the effects of lonicerin on eosinophilic asthma and its potential mechanisms. Here, we established a house dust mite (house dust mite)-induced eosinophilic asthma model in BALB/c mouse, and evaluated the effects of lonicerin on it. Our results showed that lonicerin significantly reduced airway hyperresponsiveness the number of inflammatory cells (especially eosinophils) and the elevation of interleukin (IL)-4, IL-5, IL-13 and eotaxin in bronchoalveolar lavage fluid (BALF) supernatants of mice. Additionally, lonicerin also eminently blunted inflammatory infiltration and mucus secretion, as well as mRNA levels of Mucin 5AC (MUC5AC) in lung tissue. Furthermore, results of network pharmacology and molecular docking revealed that Src kinase and epidermal growth factor receptor may be the potential targets responsible for the effects of lonicerin. Finally, in vivo experiments confirmed that lonicerin inhibited activation of the Src/EGFR pathway by decreasing their phosphorylation. Taken together, the present study demonstrated that lonicerin could suppress HDM-induced eosinophilic asthma in mice through inhibiting the activation of Src/EGFR pathway, which also provides a basis for further research as a new potentially therapeutic agent for eosinophilic asthma and its underlying mechanisms in the future.
Collapse
Affiliation(s)
- Zhenan Deng
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefei Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Yang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingna Xue
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianjuan Ma
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaomin Cen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuliang Cai
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Riken Chen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| |
Collapse
|
15
|
Kong Y, Hao M, Chen A, Yi T, Yang K, Li P, Wang Y, Li P, Jia X, Qin H, Qi Y, Ji J, Jin J, Hua Q, Tai J. SymMap database and TMNP algorithm reveal Huanggui Tongqiao granules for Allergic rhinitis through IFN-mediated neuroimmuno-modulation. Pharmacol Res 2022; 185:106483. [DOI: 10.1016/j.phrs.2022.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022]
|
16
|
Yuan H, Sun Y, Tang Y, Zhang Y, Liu S, Liu J, Zhang S, Gao Y, Feng J, Zheng F. Intervention of the Mahuang Lianqiao Chixiaodou decoction on immune imbalance in atopic dermatitis-like model mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Qiao YL, Jiao WE, Xu S, Kong YG, Deng YQ, Yang R, Hua QQ, Chen SM. Allergen immunotherapy enhances the immunosuppressive effects of Treg cells to alleviate allergic rhinitis by decreasing PU-1+ Treg cell numbers. Int Immunopharmacol 2022; 112:109187. [PMID: 36037652 DOI: 10.1016/j.intimp.2022.109187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of Tregs and their subtypes in the treatment of allergic rhinitis with allergen immunotherapy (AIT) as well as the underlying mechanism. METHODS 1. Thirty-one healthy controls, 29 Allergic rhinitis (AR) patients and 16 AR patients treated with AIT were recruited. The total nasal symptom scores (TNSSs) were calculated. The serum levels of IgE, IL-2, TNF-α, IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-17 were measured. 2. Changes in the proportions of CD4+ T cells, Treg cells, Treg subtypes and Th1/Th2/Th9/Th17/Tfh cells in the peripheral blood of the subjects in the three groups were measured. 3. The correlations of Treg cells, Treg subtypes and TNSS with the levels of various cytokines in the AR group and AIT group were analysed. RESULTS 1. Compared with the control group, the TNSS and IgE, IL-5 and IL-6 levels in the AR group were significantly increased, while the IL-2, IFN-γ and IL-10 levels were significantly decreased (P < 0.05). Compared with the AR group, the TNSS and IgE, IL-5 and IL-6 levels in the AIT group were significantly decreased, while the IL-2, IFN-γ and IL-10 levels were significantly increased (P < 0.05). 2. Compared with the control group, the proportions of Tregs, GATA3+ Tregs and Th1 cells in the AR group were significantly reduced, while the proportions of PU-1+ Tregs, T-bet+ Tregs and Th2 cells were significantly increased (P < 0.05). Compared with the AR group, the proportions of Tregs and Th1 cells in the AIT group were significantly increased, while the proportions of PU-1+ Tregs and Th2 cells were decreased (P < 0.05). 3. Correlation analysis showed that Treg cell proportions were negatively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but positively correlated with the IL-2 and IL-10 levels (P < 0.05). PU-1+ Treg cell proportions were positively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but negatively correlated with the Treg cell proportions, IL-2 levels and IL-10 levels (P < 0.05). CONCLUSIONS AIT can reduce the proportions of PU-1+ Treg subtypes in AR patients. PU-1+ Treg cell numbers can potentially be used as an indicator to monitor the therapeutic effect of AIT on AR.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|