1
|
Clayton-Cuch D, Yu L, McDougal D, Burbidge CA, Bruning JB, Bradley D, Böttcher C, Bulone V. Biochemical and in silico characterization of glycosyltransferases from red sweet cherry ( Prunus avium L.) reveals their broad specificity toward phenolic substrates. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100193. [PMID: 38292011 PMCID: PMC10825616 DOI: 10.1016/j.fochms.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.
Collapse
Affiliation(s)
- Daniel Clayton-Cuch
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- CSIRO, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Long Yu
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
| | - Daniel McDougal
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - John B. Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, Mulgrave, Melbourne, Victoria 3171, Australia
| | | | - Vincent Bulone
- Adelaide Glycomics, University of Adelaide, School of Agriculture, Food and Wine, Waite Campus, Adelaide, South Australia 5064, Australia
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| |
Collapse
|
2
|
Manocchio F, Morales D, Navarro-Masip E, Aragonès G, Torres-Fuentes C, Bravo FI, Muguerza B. Photoperiod-Dependent Effects on Blood Biochemical Markers of Phenolic-Enriched Fruit Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13111-13124. [PMID: 38811015 PMCID: PMC11181326 DOI: 10.1021/acs.jafc.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Fruits are rich in bioactive compounds, such as (poly)phenols, and their intake is associated with health benefits, although recent animal studies have suggested that the photoperiod of consumption influences their properties. Fruit loss and waste are critical issues that can be reduced by obtaining functional fruit extracts. Therefore, the aim of this study was to obtain phenolic-enriched extracts from eight seasonal fruits that can modulate blood biochemical parameters and to investigate whether their effects depend on the photoperiod of consumption. Eight ethanol-based extracts were obtained and characterized, and their effects were studied in F344 rats exposed to short (6 h light, L6) and long (18 h light) photoperiods. Cherry and apricot extracts decreased blood triacylglyceride levels only when consumed under the L6 photoperiod. Pomegranate, grape, and orange extracts reduced cholesterol and fasting glucose levels during the L6 photoperiod; however, plum extract reduced fasting glucose levels only during the L18 photoperiod. The results showed the importance of photoperiod consumption in the effectiveness of phenolic-enriched fruit extracts and promising evidence regarding the use of some of the developed fruit extracts as potential functional ingredients for the management of several blood biomarkers.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Diego Morales
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Elia Navarro-Masip
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Martins MS, Rodrigues M, Flores-Félix JD, Garcia-Viguera C, Moreno DA, Alves G, Silva LR, Gonçalves AC. The Effect of Phenolic-Rich Extracts of Rubus fruticosus, R. ulmifolius and Morus nigra on Oxidative Stress and Caco-2 Inhibition Growth. Nutrients 2024; 16:1361. [PMID: 38732606 PMCID: PMC11085810 DOI: 10.3390/nu16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs.
Collapse
Affiliation(s)
- Mariana S. Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
| | - Márcio Rodrigues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- Research Unit for Inland Development, Polytechnic Institute of Guarda (UDI-IPG), 6300-654 Guarda, Portugal
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Department Food Science and Technology, CSIC, CEBAS, Campus Universitario 25, Espinardo, 30100 Murcia, Spain; (C.G.-V.); (D.A.M.)
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Department Food Science and Technology, CSIC, CEBAS, Campus Universitario 25, Espinardo, 30100 Murcia, Spain; (C.G.-V.); (D.A.M.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Pirvu LC, Rusu N, Bazdoaca C, Androne E, Neagu G, Albulescu A. A View on the Chemical and Biological Attributes of Five Edible Fruits after Finishing Their Shelf Life: Studies on Caco-2 Cells. Int J Mol Sci 2024; 25:4848. [PMID: 38732066 PMCID: PMC11084482 DOI: 10.3390/ijms25094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 μg GAE/μL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Nicoleta Rusu
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Cristina Bazdoaca
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Elena Androne
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Av., 030304 Bucharest, Romania
| |
Collapse
|
6
|
Flores-Félix JD, Gonçalves AC, Meirinho S, Nunes AR, Alves G, Garcia-Viguera C, Moreno DA, Silva LR. Differential response of blueberry to the application of bacterial inoculants to improve yield, organoleptic qualities and concentration of bioactive compounds. Microbiol Res 2024; 278:127544. [PMID: 37988818 DOI: 10.1016/j.micres.2023.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
The application of bacterial biofortifiers is an increasingly common technique. In recent years, some strains have been shown to improve the nutraceutical qualities of crops. This work analyses the impact of biofortification with 3 bacterial strains of the genera Rhizobium, Paenibacillus and Lactiplantibacillus on the nutritional characteristics and organic composition of blueberry in Portugal. Paenibacillus sp. VMFR46 treatment showed increase of 71.36 % and 79.88 % in total production. Biofortified treatments were able to increase Brix degree, maturity index (up to 48.05 % for cv. Legacy and up to 26.04 % for cv. Duke) and CIEL*a*b* index respect to uninoculated control. In this way, (poly)phenolic compounds concentration increased in biofortified treatment, and their (poly)phenolic profile was modified, some compounds such as myricetin aglycone or myricetin derivative are exclusive of the fruits from biofortified plants, with increases in (poly)phenolic concentrations related with R. laguerreae PEPV16 or Paenibacillus sp. VMFR46 inoculation in cv. Legacy. These modifications resulted in the improvement of the nutraceutical characteristics of the fruits obtained.
Collapse
Affiliation(s)
- José David Flores-Félix
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal.
| | - Ana Carolina Gonçalves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Ana Raquel Nunes
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, 3004-504 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, 30100 Murcia, Spain
| | - Luís R Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Guarda, Portugal; University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua, Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Nunes AR, Costa EC, Alves G, Silva LR. Nanoformulations for the Delivery of Dietary Anthocyanins for the Prevention and Treatment of Diabetes Mellitus and Its Complications. Pharmaceuticals (Basel) 2023; 16:ph16050736. [PMID: 37242519 DOI: 10.3390/ph16050736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose levels to normal. However, most modern drugs have numerous side effects, some of which cause severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste, and decreased absorption leading to low bioavailability have hindered the application of anthocyanins as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these bioactive compounds. This review summarizes the potential of anthocyanins for the prevention and treatment of DM and its complications, as well as the strategies and advances in the delivery of anthocyanins using nanoformulations.
Collapse
Affiliation(s)
- Ana R Nunes
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete C Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Research Unit for Inland Development, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-554 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
8
|
Gonçalves AC, Falcão A, Alves G, Lopes JA, Silva LR. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022; 14:2272. [PMID: 36365091 PMCID: PMC9695229 DOI: 10.3390/pharmaceutics14112272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023] Open
Abstract
Anthocyanins are among the best-known phenolic compounds and possess remarkable biological activities, including antioxidant, anti-inflammatory, anticancer, and antidiabetic effects. Despite their therapeutic benefits, they are not widely used as health-promoting agents due to their instability, low absorption, and, thus, low bioavailability and rapid metabolism in the human body. Recent research suggests that the application of nanotechnology could increase their solubility and/or bioavailability, and thus their biological potential. Therefore, in this review, we have provided, for the first time, a comprehensive overview of in vitro and in vivo studies on nanocarriers used as delivery systems of anthocyanins, and their aglycones, i.e., anthocyanidins alone or combined with conventional drugs in the treatment or management of chronic diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - João A. Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
9
|
Ngamsamer C, Sirivarasai J, Sutjarit N. The Benefits of Anthocyanins against Obesity-Induced Inflammation. Biomolecules 2022; 12:biom12060852. [PMID: 35740977 PMCID: PMC9230453 DOI: 10.3390/biom12060852] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity has become a serious public health epidemic because of its associations with chronic conditions such as type 2 diabetes mellitus, hypertension, cardiovascular disease, and cancer. Obesity triggers inflammation marked by the secretion of low-grade inflammatory cytokines including interleukin-6, C-reactive protein, and tumor necrosis factor-α, leading to a condition known as “meta-inflammation”. Currently, there is great interest in studying the treatment of obesity with food-derived bioactive compounds, which have low toxicity and no severe adverse events compared with pharmacotherapeutic agents. Here, we reviewed the beneficial effects of the bioactive compounds known as anthocyanins on obesity-induced inflammation. Foods rich in anthocyanins include tart cherries, red raspberries, black soybeans, blueberries, sweet cherries, strawberries and Queen Garnet plums. These anthocyanin-rich foods have been evaluated in cell culture, animal, and clinical studies, and found to be beneficial for health, reportedly reducing inflammatory markers. One factor in the development of obesity-related inflammation may be dysbiosis of the gut microbiome. Therefore, we focused this review on the in vitro and in vivo effects of anthocyanins on inflammation and the gut microbiota in obesity.
Collapse
Affiliation(s)
- Chanya Ngamsamer
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, 10400, Thailand;
| | - Jintana Sirivarasai
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand;
- Correspondence:
| |
Collapse
|
10
|
Gonçalves AC, Nunes AR, Flores-Félix JD, Alves G, Silva LR. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022; 27:3294. [PMID: 35630771 PMCID: PMC9145489 DOI: 10.3390/molecules27103294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, it is largely accepted that the daily intake of fruits, vegetables, herbal products and derivatives is an added value in promoting human health, given their capacity to counteract oxidative stress markers and suppress uncontrolled pro-inflammatory responses. Given that, natural-based products seem to be a promising strategy to attenuate, or even mitigate, the development of chronic diseases, such as diabetes, and to boost the immune system. Among fruits, cherries and blueberries are nutrient-dense fruits that have been a target of many studies and interest given their richness in phenolic compounds and notable biological potential. In fact, research has already demonstrated that these fruits can be considered functional foods, and hence, their use in functional beverages, whose popularity is increasing worldwide, is not surprising and seem to be a promising and useful strategy. Therefore, the present review reinforces the idea that cherries and blueberries can be incorporated into new pharmaceutical products, smart foods, functional beverages, and nutraceuticals and be effective in preventing and/or treating diseases mediated by inflammatory mediators, reactive species, and free radicals.
Collapse
Affiliation(s)
- Ana C Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana R Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC-Centre for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José D Flores-Félix
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG-Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
11
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|