1
|
Palumbo M, Ugolotti M, Zimetti F, Adorni MP. Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:39-53. [PMID: 39877131 PMCID: PMC11773090 DOI: 10.1016/j.athplu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients. However, patients are increasingly sceptical of pharmacological treatments which are often associated with moderate to severe side effects. The aim of our review is to provide a collection of the most recent scientific evidence on the most common phytochemicals, used for centuries in the Mediterranean diet and traditional chinese medicine that act on these key regulators of cholesterol homeostasis and systemic inflammation, which could constitute important tools for CVD management.
Collapse
Affiliation(s)
| | | | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
2
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15:1366946. [PMID: 38746011 PMCID: PMC11091304 DOI: 10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Metabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome. Methods This scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility. Results We identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study's outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels. Conclusion The current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
3
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15. [DOI: https:/doi.org/10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
IntroductionMetabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome.MethodsThis scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility.ResultsWe identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study’s outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels.ConclusionThe current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
4
|
Ma J, Wang L, Zhao Y, Gao Y, Yin Z, Zhao M, Zhao Y, Pang X, Wang J, Xue W, Tu P, Li J, Zheng J. 2-(2-Phenylethyl)chromone-enriched extract of Chinese agarwood (Aquilaria sinensis) inhibits atherosclerosis progression through endoplasmic reticulum stress-mediated CD36 expression in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117411. [PMID: 37956912 DOI: 10.1016/j.jep.2023.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese agarwood, derived from the Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae), has a long history of use in Traditional Chinese Medicine for the management of cardiovascular disease. However, the specific active ingredients responsible for its impact on atherosclerosis are yet to be fully understood. AIM OF THE STUDY The aim of this study is to investigate the anti-atherosclerotic effectiveness of the 2-(2-phenylethyl)chromone-enriched extract derived from Chinese agarwood (CPE) through the ER stress-mediated CD36 pathway. MATERIALS AND METHODS To assess the effectiveness of CPE, an atherosclerotic mouse model was established using ApoE-/- mice with a high-fat diet. Then we assessed the impact of CPE on lipid accumulation in THP-1 macrophages that were exposed to oxLDL. Subsequently, the effect of CPE on the expression of CD36 and markers related to ER stress was characterized. RESULTS Our in vivo research confirmed that CPE effectively reduces the formation of aortic plaques in atherosclerotic ApoE-/- mice. Additionally, our in vitro study observed that CPE inhibits the uptake of oxLDL and hinders the generation of foam cells. This effect is achieved by downregulating the level of CD36 in macrophages. Furthermore, our study revealed that the increase in CD36 expression, resulting from oxLDL exposure, is governed by the activation of JNK1/2/3 signaling pathways and the initiation of ER stress. CONCLUSION CPE demonstrated significant efficacy to inhibit the atherosclerosis. The ER stress/P-JNK/PPARγ/CD36 signaling pathway plays critical involvement in modulating the foam cell formation in vitro and in vivo. These findings underscore the efficacy of CPE as a viable therapeutic intervention for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jiale Ma
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingxiao Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yimu Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Gao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyu Yin
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Maoyuan Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfang Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueping Pang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjiao Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weigang Xue
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Jun Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiao Zheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Chae HS, Cantrell CL, Khan IA, Jarret RL, Khan SI. Capsiate-Rich Fraction of Capsicum annuum Induces Muscular Glucose Uptake, Ameliorates Rosiglitazone-Induced Adipogenesis, and Exhibits Activation of NRs Regulating Multiple Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18395-18404. [PMID: 37972244 DOI: 10.1021/acs.jafc.3c06148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Capsiate is a key ingredient in the fruits of a nonpungent cultivar of Capsicum annuum. We investigated the effects of a C. annuum extract (CE) and a capsiate-rich fraction of CE (CR) on nuclear receptors involved in multiple signaling pathways, glucose uptake, and adipogenesis in comparison to pure capsiate (Ca). Similar to the effect of Ca (100 μM), CE (500 μg/mL) and CR (100 μg/mL) caused the activation of PPARα and PPARγ (>3-fold), while CR also activated LXR and NRF2 (>2 fold). CR (200 μg/mL) and Ca (100 μM) decreased lipid accumulation (22.6 ± 14.1 and 49.7 ± 7.3%, respectively) in adipocytes and increased glucose uptake (44.7 ± 6.2 and 30.1 ± 12.2%, respectively) in muscle cells and inhibited the adipogenic effect induced by rosiglitazone by 41.2 ± 5.6 and 13.9 ± 4.3%, respectively. This is the first report to reveal the agonistic action of CR and Ca on multiple nuclear receptors along with their enhanced glucose uptake and antiadipogenic effects. The results indicate the potential utility of the capsiate-rich fraction of C. annuum in alleviating the symptoms of metabolic syndrome and in preventing the undesired adipogenic effects of full PPARγ agonists such as rosiglitazone.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Robert L Jarret
- Plant Genetic Resources Unit, USDA-ARS, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
6
|
Chae HS, Dale O, Mir TM, Ashfaq MK, Avula B, Walker LA, Khan IA, Khan SI. Juniper Berries Regulate Diabetes and Obesity Markers Through Modulating PPAR α, PPAR γ, and LXR: In Vitro and In Vivo Effects. J Med Food 2023; 26:307-318. [PMID: 37186895 DOI: 10.1089/jmf.2022.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 μg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Olivia Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Tahir M Mir
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Mohammad K Ashfaq
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
7
|
Feeding Aquilaria sinensis Leaves Modulates Lipid Metabolism and Improves the Meat Quality of Goats. Foods 2023; 12:foods12030560. [PMID: 36766087 PMCID: PMC9914005 DOI: 10.3390/foods12030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Aquilaria (A.) sinensis is a medicinal plant widely grown in tropical South China. Given the abundant pruning waste of its leaves, the use of A. sinensis leaves is valuable. In this study, goats were fed a diet containing 20% A. sinensis leaves. Compared with the basal diet, feeding A. sinensis leaves to goats did not affect growth performance but considerably reduced the feeding cost. Strikingly, feeding A. sinensis leaves resulted in a significant decrease in the blood cholesterol levels (2.11 vs. 1.49 mmol/L, p = 0.01) along with a significant increase in the high-density lipoprotein levels (1.42 vs. 1.82 mmol/L, p = 0.01). There was also a tendency to lower the content of low-density lipoprotein levels in goats (0.78 vs. 0.45 mmol/L, p = 0.09). Furthermore, metabolomics analysis demonstrated that the reduction in cholesterol levels occurred in both the serum (0.387-fold change) and muscle (0.382-fold change) of goats during A. sinensis leaf feeding. The metabolic responses to feeding A. sinensis leaves suggest that the activation of lipolysis metabolism might happen in goats. These observed changes would be conducive to improving animal health and meat quality, ultimately benefiting human health.
Collapse
|