1
|
Lin Y, Cao G, Xu J, Zhu H, Tang L. Multi-Omics Analysis Provides Insights into Green Soybean in Response to Cold Stress. Metabolites 2024; 14:687. [PMID: 39728468 DOI: 10.3390/metabo14120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Green soybean (Glycine max (L.) Merrill) is a highly nutritious food that is a good source of protein and fiber. However, it is sensitive to low temperatures during the growing season, and enhancing cold tolerance has become a research hotspot for breeding improvement. Background/Objectives: The underlying molecular mechanisms of cold tolerance in green soybean are not well understood. Methods: Here, a comprehensive analysis of transcriptome and metabolome was performed on a cold-tolerant cultivar treated at 10 °C for 24 h. Results: Compared to control groups, we identified 17,011 differentially expressed genes (DEGs) and 129 differentially expressed metabolites (DEMs). The DEGs and DEMs were further subjected to KEGG functional analysis. Finally, 11 metabolites (such as sucrose, lactose, melibiose, and dehydroascorbate) and 17 genes (such as GOLS, GLA, UGDH, and ALDH) were selected as candidates associated with cold tolerance. Notably, the identified metabolites and genes were enriched in two common pathways: 'galactose metabolism' and 'ascorbate and aldarate metabolism'. Conclusions: The findings suggest that green soybean modulates the galactose metabolism and ascorbate and aldarate metabolism pathways to cope with cold stress. This study contributes to a deeper understanding of the complex molecular mechanisms enabling green soybeans to better avoid low-temperature damage.
Collapse
Affiliation(s)
- Yanhui Lin
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jing Xu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Honglin Zhu
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liqiong Tang
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
2
|
Xu C, Liu B, Wang Y, Hu Z. Construction of Freezing Injury Grade Index for Nanfeng Tangerine Plants Based on Physiological and Biochemical Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:3109. [PMID: 39520027 PMCID: PMC11548687 DOI: 10.3390/plants13213109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Low-temperature freezing stress constitutes the most significant meteorological disaster during the overwintering period in the Nanfeng Tangerine (NT) production area, severely impacting the normal growth and development of the plants. Currently, the accuracy of meteorological disaster warnings and forecasts for NT orchards remains suboptimal, primarily due to the absence of quantitative meteorological indicators for low-temperature freezing stress. Therefore, this study employed NT plants as experimental subjects and conducted controlled treatment experiments under varying intensities of low-temperature freezing stress (0 °C, -2 °C, -5 °C, -7 °C, and -9 °C) and durations (1 h, 4 h, and 7 h). Subsequently, physiological and biochemical parameters were measured, including photosynthetic parameters, chlorophyll fluorescence parameters, reactive oxygen species, osmoregulatory substances, and antioxidant enzyme activities in NT plants. The results demonstrated that low-temperature freezing stress adversely affected the photosynthetic system of NT plants, disrupted the dynamic equilibrium of the antioxidant system, and compromised cellular stability. The severity of freezing damage increased with decreasing temperature and prolonged exposure. Chlorophyll (a/b) ratio (Chl (a/b)), maximum quantum yield of photosystem II (Fv/Fm), soluble sugar, and malondialdehyde (MDA) were identified as key indicators for assessing physiological and biochemical changes in NT plants. Utilizing these four parameters, a comprehensive score (CS) model of freezing damage was developed to quantitatively evaluate the growth status of NT plants across varying low-temperature freezing damage gradients and durations. Subsequently, the freezing damage grade index for NT plants during the overwintering period was established. Specifically, Level 1 for CS ≤ -0.50, Level 2 for -0.5 < CS ≤ 0, Level 3 for 0 < CS ≤ 0.5, and Level 4 for 0.5 < CS. The research results provide valuable data for agricultural meteorological departments to carry out disaster monitoring, early warning, and prevention and control.
Collapse
Affiliation(s)
- Chao Xu
- Jiangxi Key Laboratory of Horticultural Crops (Fruit, Vegetable & Tea) Breeding, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (Y.W.)
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Buchun Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Yuting Wang
- Jiangxi Key Laboratory of Horticultural Crops (Fruit, Vegetable & Tea) Breeding, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (Y.W.)
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Zhongdong Hu
- Jiangxi Key Laboratory of Horticultural Crops (Fruit, Vegetable & Tea) Breeding, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (C.X.); (Y.W.)
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
3
|
Chen M, Dai S, Chen D, Zhu P, Feng N, Zheng D. Comparative Analysis Highlights Uniconazole's Efficacy in Enhancing the Cold Stress Tolerance of Mung Beans by Targeting Photosynthetic Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1885. [PMID: 39065416 PMCID: PMC11280120 DOI: 10.3390/plants13141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Soybean (Glycine max) and mung bean (Vigna radiata) are key legumes with global importance, but their mechanisms for coping with cold stress-a major challenge in agriculture-have not been thoroughly investigated, especially in a comparative study. This research aimed to fill this gap by examining how these two major legumes respond differently to cold stress and exploring the role of uniconazole, a potential stress mitigator. Our comprehensive approach involved transcriptomic and metabolomic analyses, revealing distinct responses between soybean and mung bean under cold stress conditions. Notably, uniconazole was found to significantly enhance cold tolerance in mung bean by upregulating genes associated with photosynthesis, while its impact on soybean was either negligible or adverse. To further understand the molecular interactions, we utilized advanced machine learning algorithms for protein structure prediction, focusing on photosynthetic pathways. This enabled us to identify LOC106780309 as a direct binding target for uniconazole, confirmed through isothermal titration calorimetry. This research establishes a new comparative approach to explore how soybean and mung bean adapt to cold stress, offers key insights to improve the hardiness of legumes against environmental challenges, and contributes to sustainable agricultural practices and food security.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
| | - Peiyi Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (S.D.); (D.C.); (P.Z.)
- Shenzhen Research Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| |
Collapse
|
4
|
Zahir SADM, Jamlos MF, Omar AF, Jamlos MA, Mamat R, Muncan J, Tsenkova R. Review - Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123273. [PMID: 37666099 DOI: 10.1016/j.saa.2023.123273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Experiments demonstrated that visible and near-infrared (Vis-NIR) spectroscopy is a highly reliable tool for determining the nutritional status of plants. Although numerous studies on various kinds of plants have been conducted, there are only a few summaries of the research findings regarding the absorbance bands in the visible and near-infrared region and how they relate to the nutritional status of plants. This article will discuss the application of Vis-NIR spectroscopy for monitoring the nutrient conditions of plants, with a particular emphasis on three major components required by plants, namely nitrogen (N), phosphorus (P), and potassium (K), or NPK. Each section discussed different topics, for instance, the essential nutrients needed by plants, the application of Vis-NIR spectroscopy in nutrient status analysis, chemometrics tools, and absorbance bands related to the nutrient status, respectively. Deduction made concluded that factors affecting the plant's structure are contributed by several circumstances like the age of leaves, concentration of pigments, and water content. These factors are intertwined, strongly correlated, and can be observed in the visible and near-infrared regions. While the visible region is commonly utilised for nutritional analysis in plants, the literature review performed in this paper shows that the near-infrared region as well contains valuable information about the plant's nutritional status. A few wavelengths related to the direct estimation of nutrients in this review explained that information on nutrients can be linked with chlorophyll and water absorption bands such that N and P are the components of chlorophyll and protein; on the other hand, K exists in the form of cationic carbohydrates which are sensitive to water region.
Collapse
Affiliation(s)
- Siti Anis Dalila Muhammad Zahir
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Malaysia
| | - Mohd Faizal Jamlos
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Malaysia; Centre of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Malaysia.
| | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Mohd Aminudin Jamlos
- Faculty of Electronics Engineering Technology, Universiti Malaysia Perlis, 26600 Arau, Malaysia
| | - Rizalman Mamat
- Centre for Automotive Engineering Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Malaysia
| | - Jelena Muncan
- Aquaphotomics Research Department, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Faculty of Agriculture, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Moyankova D, Stoykova P, Veleva P, Christov NK, Petrova A, Atanassova S. An Aquaphotomics Approach for Investigation of Water-Stress-Induced Changes in Maize Plants. SENSORS (BASEL, SWITZERLAND) 2023; 23:9678. [PMID: 38139522 PMCID: PMC10747378 DOI: 10.3390/s23249678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water stress were conducted. Two maize lines were used: US corn-belt inbred line B37 and mutant inbred XM 87-136, characterized by very high drought tolerance. After reaching the 4-leaf stage, 10 plants from each line were subjected to water stress, and 10 plants were used as control, kept under a regular water regime. The drought lasted until day 17 and then the plants were recovered by watering for 4 days. A MicroNIR OnSite-W Spectrometer (VIAVI Solutions Inc., Chandler, AZ, USA) was used for in vivo measurement of each maize leaf spectra. PLS models for determining drought days were created and aquagrams were calculated separately for the plants' second, third, and fourth leaves. Differences in absorption spectra were observed between control, stressed, and recovered maize plants, as well as between different measurement days of stressed plants. Aquagrams were used to visualize the water spectral pattern in maize leaves and how it changes along the drought process.
Collapse
Affiliation(s)
- Daniela Moyankova
- AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (D.M.); (P.S.); (N.K.C.)
| | - Petya Stoykova
- AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (D.M.); (P.S.); (N.K.C.)
| | - Petya Veleva
- Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (P.V.); (A.P.)
| | - Nikolai K. Christov
- AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (D.M.); (P.S.); (N.K.C.)
| | - Antoniya Petrova
- Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (P.V.); (A.P.)
| | - Stefka Atanassova
- Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (P.V.); (A.P.)
| |
Collapse
|
6
|
Muncan J, Tsenkova R. Aquaphotomics—Exploring Water Molecular Systems in Nature. Molecules 2023; 28:molecules28062630. [PMID: 36985601 PMCID: PMC10059907 DOI: 10.3390/molecules28062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023] Open
Abstract
Since its birth in 2005, when introduced by Prof [...]
Collapse
|
7
|
Tsegaw M, Zegeye WA, Jiang B, Sun S, Yuan S, Han T, Wu T. Progress and Prospects of the Molecular Basis of Soybean Cold Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:459. [PMID: 36771543 PMCID: PMC9919458 DOI: 10.3390/plants12030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Cold stress is a major factor influencing the geographical distribution of soybean growth and causes immense losses in productivity. Understanding the molecular mechanisms that the soybean has undergone to survive cold temperatures will have immense value in improving soybean cold tolerance. This review focuses on the molecular mechanisms involved in soybean response to cold. We summarized the recent studies on soybean cold-tolerant quantitative trait loci (QTLs), transcription factors, associated cold-regulated (COR) genes, and the regulatory pathways in response to cold stress. Cold-tolerant QTLs were found to be overlapped with the genomic region of maturity loci of E1, E3, E4, pubescence color locus of T, stem growth habit gene locus of Dt1, and leaf shape locus of Ln, indicating that pleiotropic loci may control multiple traits, including cold tolerance. The C-repeat responsive element binding factors (CBFs) are evolutionarily conserved across species. The expression of most GmDREB1s was upregulated by cold stress and overexpression of GmDREB1B;1 in soybean protoplast, and transgenic Arabidopsis plants can increase the expression of genes with the DRE core motif in their promoter regions under cold stress. Other soybean cold-responsive regulators, such as GmMYBJ1, GmNEK1, GmZF1, GmbZIP, GmTCF1a, SCOF-1 and so on, enhance cold tolerance by regulating the expression of COR genes in transgenic Arabidopsis. CBF-dependent and CBF-independent pathways are cross-talking and work together to activate cold stress gene expression. Even though it requires further dissection for precise understanding, the function of soybean cold-responsive transcription factors and associated COR genes studied in Arabidopsis shed light on the molecular mechanism of cold responses in soybeans and other crops. Furthermore, the findings may also provide practical applications for breeding cold-tolerant soybean varieties in high-latitude and high-altitude regions.
Collapse
Affiliation(s)
- Mesfin Tsegaw
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
| | - Workie Anley Zegeye
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar P.O. Box 194, Ethiopia
- John Innes Centre, Norwich Bioscience Institutes, Norwich NR2 3LA, UK
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|