1
|
Qin Y, Wang N, Pan H, Lei X, Li X. Hellenia speciosa: A comprehensive review of traditional applications, phytonutrients, health benefits and safety. Food Chem 2025; 465:142003. [PMID: 39581103 DOI: 10.1016/j.foodchem.2024.142003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Hellenia speciosa (H. speciosa) is not only recognized for its nutritional benefits, but is also revered as a traditional medicinal plant with diverse biological activities. H. speciosa is a perennial herb that is abundant in phytonutrients, including important nutrients such as proteins, amino acids, and vitamins, as well as potent bioactive components like steroids, terpenes, and volatile oils. Among them, steroids and terpenoids are the main bioactive components in H. speciosa, and they are also the two most abundant compounds in it. H. speciosa has a variety of pharmacological effects, such as anti-inflammatory, antidiabetic, and antimicrobial, which is consistent with its traditional use as a folk medicine. Based on its traditional uses, phytonutrients, and health benefits, H. speciosa is considered a valuable medicinal and edible plant. This review provides a comprehensive overview and critical analysis of recent advancements in research on H. speciosa, serving as a valuable reference for future investigations and rational exploitation of this plant.
Collapse
Affiliation(s)
- Ying Qin
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Na Wang
- Department of Pharmacy, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| | - Hao Pan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Xia Lei
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu CM Clinial Innovation Center of Degenerative Bone& Joint Disease, Wuxi, China.
| | - Xiaoliang Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province &Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Abdel-Hamid HA, Gaber Ibrahim MF, Elroby Ali DM, Abdel-Hakeem EA. Beclin1/LC3II/P62 autophagy pathway activation is involved in the protective action of C-peptide against prostate injury in a rat model of type 1 diabetes. Arch Physiol Biochem 2024:1-13. [PMID: 39494703 DOI: 10.1080/13813455.2024.2422317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
One of the undesirable complications of diabetes is sexual dysfunctions in males which may affect their fertility. This research aims to study the effect of C-peptide administration on the prostate of diabetic rats and focusing on exploring the role of the autophagy pathway in diabetic prostate and whether it is involved in C-peptide action. Forty adult male Wistar albino rats were separated into control group, diabetic group, diabetic + C-peptide and diabetic + C-peptide + 3-Methyladenine (autophagy inhibitor). Serum metabolic parameters and prostatic specific antigen (PSA) were measured. Markers of oxidative stress, inflammation, fibrosis, cell proliferation and cell autophagy were evaluated in prostate tissues using biochemical, western blotting and immunohistochemical techniques. C-peptide administration ameliorated the effects of diabetes on the prostate through its hypoglycaemic, antioxidant, anti-inflammatory, and antiproliferative effects which were reversed with autophagy inhibition. Thus, we concluded that C-peptide prevented the effects of diabetes on the prostate through stimulation of the autophagy pathway.
Collapse
Affiliation(s)
- Heba A Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, Egypt
- Medical Physiology Department, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| | | | | | | |
Collapse
|
3
|
P K, K S, M A, Egbuna C. Preparation of bio-synthesized Ag nanoparticles and assessment of their antidiabetic and antioxidant potential against STZ-induced diabetic albino rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:535-558. [PMID: 38234041 DOI: 10.1080/09205063.2024.2301808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Bio-synthesized silver nanoparticles (AgNPs) were successfully obtained using the leaf extract from Ventilago maderaspatana. Extensive analysis was conducted to evaluate the physical and chemical characteristics of the bioderived AgNPs. XRD analysis confirmed their cubic structure, and revealed a well-defined size distribution with average crystallite size of 11.7 nm. FE-SEM and TEM images visually supported the observed size range. The presence of plant-mediated phytochemicals on the surface of AgNPs was confirmed through DLS, FTIR, and TGA/DTA studies. To assess their antidiabetic potential, rats were induced with streptozotocin, resulting in elevated levels of biochemical parameters associated with diabetes. Conversely, serum insulin levels (2.50 ± 0.55) and glucokinase activity (64.50 ± 8.66) decreased. However, treatment with AgNPs demonstrated a dose-dependent reduction in blood glucose, total protein, albumin, and HbA1c levels, effectively restoring them to normal ranges. Moreover, the treatment significantly increased insulin levels (7.55 ± 0.63) and glucokinase activity (121.50 ± 4.60), indicating the antidiabetic potential of V. maderaspatana-mediated AgNPs. Notably, the exitance of phytochemicals, like flavonoids and phenols, on the surface of AgNPs facilitated their ability to neutralize reactive oxygen species (ROS) through electron donation. This property enhanced their overall antidiabetic efficiency.
Collapse
Affiliation(s)
- Karuppannan P
- PG & Research Department of Zoology, Vivekanandha College for Women, Thiruchengodu, Tamilnadu, India
| | - Saravanan K
- PG and Research Department of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - Ashokkumar M
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
| | - Chukwuebuka Egbuna
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Igbariam, Nigeria
| |
Collapse
|
4
|
Li DM, Pan YG, Liu HL, Yu B, Huang D, Zhu GF. Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships. BMC Genomics 2024; 25:68. [PMID: 38233753 PMCID: PMC10792896 DOI: 10.1186/s12864-024-09996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships. RESULT The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya). CONCLUSION The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan-Gu Pan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hai-Lin Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Yu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dan Huang
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
5
|
Revathi G, Elavarasi S, Saravanan K, Ashokkumar M, Egbuna C. Greater efficiency of polyherbal drug encapsulated biosynthesized chitosan nano-biopolymer on diabetes and its complications. Int J Biol Macromol 2023; 240:124445. [PMID: 37060982 DOI: 10.1016/j.ijbiomac.2023.124445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Diabetes is a highly complex disease that has an adverse impact on the lives of individuals, and the current medicines used to manage diabetes have obvious side effects. Medicinal plants, on the other hand, may serve as an alternate source of anti-diabetic drugs. A polyherbal combination has a higher and more extensive therapeutic potential than a single herb. Yet, due to deterioration during the absorption process, the usage of this drug still yields inadequate results. Encapsulation of polyherbal drug with chitosan nanoparticles is one of the key ways to solve this problem due to its biocombatibilty, slow and targeted drug delivery characteristics. In the present study, the chitosan was derived from prawn shell and the chitosan nanoparticles had been prepared by ionic-gelation method. The anti-diabetic polyherbal drug (Andrographis paniculata, Andrographis alata, Adhatoda zeylanica, Gymnema sylvestre, Syzygium cumini, and Justicia glabra) was encapsulated with a bio-derived chitosan biopolymer. The drug loading efficiency was about 85 %. The chemical and physical properties of the chitosan and drug-loaded chitosan nanoparticles had been analyzed by FT-IR absorption, XRD, SEM, TEM and EDAX analysis. The antidiabetic efficiency, hepatoprotective activity and antihyperlipedimic activity of the chitosan nanoparticles, polyherbal drug and polyherbal drug encapsulated with chitosan nanoparticles were assessed in a group of rats. The polyherbal drug reduced the serum glucose level from 306.4 mg/dL to 134.47 mg/dL, while the polyherbal drug encapsulated with chitosan nanoparticles reduced to 127.017 mg/dL. This was very close to the serum glucose level of non-diabetic rat (124.65 mg/dL). Further, it considerably increased the insulin level close to that of non-diabetic rat. Thus, the polyherbal drug encapsulated with chitosan nanoparticles showed superior efficiency in antidiabetic and also diabetic complications.
Collapse
Affiliation(s)
- G Revathi
- PG and Research Dept. of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - S Elavarasi
- PG and Research Dept. of Zoology, Holy Cross College (Autonomous), Thiruchirappalli, Tamilnadu, India
| | - K Saravanan
- PG and Research Dept. of Zoology, Nehru Memorial College (Autonomous), Puthanampatti, Thiruchirappalli, Tamilnadu, India
| | - M Ashokkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602 105, India.
| | - Chukwaebuka Egbuna
- Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Nigeria
| |
Collapse
|
6
|
Adult hypertensive rats are more prone to gut microflora perturbation and fibrosis in response to moderate restraint stress. Transl Res 2023; 254:92-114. [PMID: 36566015 DOI: 10.1016/j.trsl.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022]
Abstract
Hypertension (HTN) is a common endpoint for numerous cardiovascular diseases, the prevalence of which has been quickly increasing due to a wide range of reasons. Previous research has found that following stress, ELISA and 16S rDNA sequencing indicated substantial changes in plasma cytokines or hormones, as well as alterations in gut microbiota in juvenile hypertensive rats. However, it remains still unclear how such interaction modifications affect microbial populations and organismal function. Stress-related hormones show a significant drop. Similar to earlier research, the stress group had dramatically increased release of pro-inflammatory cytokines such as IL-17. Importantly, a unified collection of tools that allows for deep and comprehensive colonic structural investigation has been developed. Stress may limit the transition of macrophages (Mφs) to M1Mφs while increasing the transfer to M2Mφs. Evidence highlighted that tight junction proteins were decreased along with enhancement in intestinal permeability. Morphological analysis revealed that the SHR-S group exhibited considerably higher levels of morphological alterations and fibrosis in colon, heart, and thoracic aorta tissues.Significant improvements in bacteria linked with short-chain fatty acid synthesis, such as Prevotella and Ruminococcus, were discovered by metagenomic analysis. Adult hypertensive rats are more susceptible to gut microbiota disruption and fibrosis as a result of mild restraint stress. This might contribute to some innovative ideas for HTN both treatment and prevention.
Collapse
|