1
|
Tao A, Zhang Y, Gan Z, Yin C, Tian Y, Zhang L, Zhong X, Fang X, Jiang G, Zhang R. Isolation, structural features, and bioactivities of polysaccharides from Panax notoginseng: A review. Int J Biol Macromol 2024; 280:135765. [PMID: 39299421 DOI: 10.1016/j.ijbiomac.2024.135765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Panax notoginseng a member of the Araliaceous family, is a traditional Chinese medicinal and functional food with a long history. This herb contains various compounds, including saponins, alkaloids, flavones, and polysaccharides. Polysaccharides are the primary bioactive substances in P. notoginseng and have garnered significant attention from researchers globally. Numerous studies have confirmed that Panax notoginseng polysaccharides (PNPs) exhibit a wide range of remarkable bioactivities. These include anti-renal fibrosis, anti-tumor, anti-oxidation, anti-aging, anti-inflammation, immune regulation, liver protection, hypoglycemia, and anti-cerebral ischemia-reperfusion injury effects. They also promote bone growth, defect repair, and improve hematopoietic function. As a natural polysaccharide, PNPs show potential as a drug and functional material with good safety. This review systematically summarizes recent studies on the extraction and purification methods of PNPs, characterizing their chemical structure, biological activity, and application in various fields, aiming to provide theoretical insights and technical guidance for the development of PNPs as a novel functional food.
Collapse
Affiliation(s)
- Aien Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Yue Zhang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Zhengkun Gan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglong Yin
- College of Pharmacy, Dali University, Dali 671003, China
| | - Yongjie Tian
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Lingsheng Zhang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xuehua Zhong
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Xiao Fang
- College of Medicine, Lijiang Culture and Tourism College, Lijiang 674100, China
| | - Guihua Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Rongping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Yunnan, China.
| |
Collapse
|
2
|
Huan C, Yao J, Wang X, Zhang H, Wang X, Jiang L, Gao S. Rehmmannia glutinosa polysaccharide exerts antiviral activity against pseudorabies virus and antioxidant activity. Int J Biol Macromol 2024; 274:133455. [PMID: 38945342 DOI: 10.1016/j.ijbiomac.2024.133455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Pseudorabies virus (PRV) is an important pathogen harming the global pig industry. Vaccines available for swine cannot protect against PRV completely. Furthermore, no antiviral drugs are available to treat PRV infections. Rehmmannia glutinosa polysaccharide (RGP) possesses several medicinal properties. However, its antiviral activity is not reported. In the present study, we found that RGP can inhibit PRV/XJ5 infection by western blotting, immunofluorescent assay (IFA), and TCID50 assay quantitative polymerase chain reaction (qPCR). We revealed RGP can inhibit virus adsorption and invasion into PK-15 cells in a dose-dependent manner via western blotting, IFA, TCID50 assay, and quantitative polymerase chain reaction (qPCR), and suppressed PRV/XJ5 replication through western blotting, and qPCR. Additionally, it also reduced PRV/XJ5-induced ROS, lipid oxidation, and improved SOD levels in PK-15 cells, which was observed by using corresponding test kits. To conclude, our findings suggest that RGP might be a novel therapeutic agent for preventing and controlling PRV infection and antioxidant agent.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - HanYu Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - XiaoBing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Huang X, Chen X, Xian Y, Jiang F. Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs. Carbohydr Res 2024; 542:109205. [PMID: 38981321 DOI: 10.1016/j.carres.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Xingyin Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China.
| |
Collapse
|
4
|
Duan X, Xu M, Wang Y, Liu N, Wang X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. Effect of miR-17 on Polygonum Cillinerve polysaccharide against transmissible gastroenteritis virus. Front Vet Sci 2024; 11:1360102. [PMID: 38444776 PMCID: PMC10912159 DOI: 10.3389/fvets.2024.1360102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) could cause diarrhea, vomiting, dehydration and even death in piglets, miRNA played an important role in the interaction between virus and cell. The study aimed to investigate the impact of miR-17 on the polysaccharide of Polygonum Cillinerve (PCP) in combating TGEV. miR-17 was screened and transfection validation was performed by Real-time PCR. The function of miR-17 on PK15 cells infected with TGEV and treated with PCP was investigated by DCFH-DA loading probe, JC-1 staining and Hoechst fluorescence staining. Furthermore, the effect of miR-17 on PCP inhibiting TGEV replication and apoptosis signaling pathways during PCP against TGEV infection was measured through Real-time PCR and Western blot. The results showed that miR-17 mimic and inhibitor could be transferred into PK15 cells and the expression of miR-17 significantly increased and decreased respectively compared with miR-17 mimic and inhibitor (P < 0.05). A total 250 μg/mL of PCP could inhibit cells apoptosis after transfection with miR-17. PCP (250 μg/mL and 125 μg/mL) significantly inhibited the decrease in mitochondrial membrane potential induced by TGEV after transfection with miR-17 (P < 0.05). After transfection of miR-17 mimic, PCP at concentrations of 250 μg/mL and 125 μg/mL significantly promoted the mRNA expression of P53, cyt C and caspase 9 (P < 0.05). Compared with the control group, the replication of TGEV gRNA and gene N was significantly inhibited by PCP at concentrations of 250 μg/mL and 125 μg/mL after transfection of both miR-17 mimic and inhibitor (P < 0.05). PCP at 62.5 μg/mL significantly inhibited the replication of gene S following transfection with miR-17 inhibitor (P < 0.05). These results suggested that PCP could inhibit the replication of TGEV and apoptosis induced by TGEV by regulating miR-17.
Collapse
Affiliation(s)
- Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Huan C, Zhang R, Xie L, Wang X, Wang X, Wang X, Yao J, Gao S. Plantago asiatica L. polysaccharides: Physiochemical properties, structural characteristics, biological activity and application prospects: A review. Int J Biol Macromol 2024; 258:128990. [PMID: 38158057 DOI: 10.1016/j.ijbiomac.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Ruizhen Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Li Xie
- Fujian Yixinbao Biopharmaceutical Co., Ltd., Zhangzhou, China
| | - Xingyu Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Yan Y, Yang M, Jiao Y, Li L, Liu Z, Shi J, Shen Z, Peng G. Drug screening identified that handelin inhibits feline calicivirus infection by inhibiting HSP70 expression in vitro. J Gen Virol 2024; 105. [PMID: 38175184 DOI: 10.1099/jgv.0.001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.
Collapse
Affiliation(s)
- Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
7
|
Li D, Wu Y, Yin H, Feng W, Ma X, Xiao H, Xin W, Li C. Panax Notoginseng polysaccharide stabilized gel-like Pickering emulsions: Stability and mechanism. Int J Biol Macromol 2023; 249:125893. [PMID: 37473886 DOI: 10.1016/j.ijbiomac.2023.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In this work, the polysaccharide from Panax Notoginseng (SPNP), a traditional herb in China, was used as an outstanding Pickering stabilizer to fabricate Pickering emulsions. The SPNP was characterized to be a porous network structure with a rough surface surrounded by some nanoparticles. Rheological measurement of the obtained Pickering emulsions demonstrated the formation of emulsion gels. Moreover, the emulsions exhibited excellent storage (14 days), pH (1.0-11.0), ionic strength (0-500 mM), and temperature (4-50 °C) stabilities. In addition, the Pickering emulsions showed a freeze-thaw stability, which is beneficial in food, cosmetic or biomedical applications when they may require freezing for storage and melting before use. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) results showed that SPNPs effectively adsorbed at the oil-water interface by forming a compact three-dimensional (3D) network structure and multilayer anchoring on the surface of the emulsion droplets, thus inhibiting the droplet coalescence and flocculation. This study provides a kind of Pickering emulsions applicable in food, biomedical and cosmetic industries.
Collapse
Affiliation(s)
- Dafei Li
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yingni Wu
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Yin
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Feng
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuang Ma
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, China.
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Wang Z, Cai X, Ren Z, Shao Y, Xu Y, Fu L, Zhu Y. Piceatannol as an Antiviral Inhibitor of PRV Infection In Vitro and In Vivo. Animals (Basel) 2023; 13:2376. [PMID: 37508153 PMCID: PMC10375968 DOI: 10.3390/ani13142376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudorabies virus (PRV) belongs to the family Herpesviridae. PRV has a wide host range and can cause cytopathic effects (CPEs) in PK-15 cells. Therefore, PRV was used as a model to study the antiviral activity of piceatannol. The results showed that piceatannol could restrain PRV multiplication in PK-15 cells in a dose-dependent manner. The 50% inhibitory concentration (IC50) was 0.0307 mg/mL, and the selectivity index (SI, CC50/IC50) was 3.68. Piceatannol could exert an anti-PRV effect by reducing the transcription level of viral genes, inhibiting PRV-induced apoptosis and elevating the levels of IL-4, TNF-α and IFN-γ in the serum of mice. Animal experiments showed that piceatannol could delay the onset of disease, reduce the viral load in the brain and kidney and reduce the pathological changes in the tissues and organs of the mice to improve the survival rate of the mice (14.3%). Therefore, the anti-PRV activity of piceatannol in vivo and in vitro was systematically evaluated in this study to provide scientific data for developing a new alternative measure for controlling PRV infection.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Xiaojing Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Zhiyuan Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yongkang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Lian Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
9
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Cai X, Shao Y, Wang Z, Xu Y, Ren Z, Fu L, Zhu Y. Antiviral activity of dandelion aqueous extract against pseudorabies virus both in vitro and in vivo. Front Vet Sci 2023; 9:1090398. [PMID: 36699332 PMCID: PMC9870063 DOI: 10.3389/fvets.2022.1090398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Pseudorabies virus (PRV) is one of the most significant pathogens of swine. In recent years, the continual emergence of novel PRV variants has caused substantial economic losses in the global pig industry. PRV can infect humans leading to symptoms of acute encephalitis with implications for public health. Thus, new measures are urgently needed to prevent PRV infection. This study evaluated the anti-PRV capability of dandelion aqueous extract (DAE) in vitro and in vivo. DAE was found to inhibit the multiplication of the PRV TJ strain in PK15 cells in a concentration-dependent manner, with a 50% inhibitory concentration (IC50) of 0.2559 mg/mL and a selectivity index (SI) of 14.4. DAE inhibited the adsorption and replication stages of the PRV life cycle in vitro, and the expression of IE180, EP0, UL29, UL44, and UL52 was inhibited in the presence of DAE. In vivo experiment results of mice show that a 0.5 g/kg dose of DAE injected intraperitoneally protected 28.6% of the mice from the lethal challenge; decreased the viral load in the liver, lung, brain, heart, and kidney of PRV-infected mice; and attenuated brain damage caused by PRV infection. Furthermore, DAE could also ameliorate viral infection through regulation of the levels of cytokines (IFN-γ, TNF-α, and IL-4) in PRV-infected mouse serum. These results demonstrated that DAE exhibited potent inhibitory capability against PRV infection in vitro and in vivo; DAE is therefore expected to be a candidate TCM herb for use against PRV infection.
Collapse
|
11
|
Yang X, Xiong Y, Wang H, Jiang M, Xu X, Mi Y, Lou J, Li X, Sun H, Zhao Y, Li X, Yang W. Multicomponent Characterization of the Flower Bud of Panax notoginseng and Its Metabolites in Rat Plasma by Ultra-High Performance Liquid Chromatography/Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249049. [PMID: 36558182 PMCID: PMC9786607 DOI: 10.3390/molecules27249049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development.
Collapse
Affiliation(s)
- Xiaonan Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Xiong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yueguang Mi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia Lou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiaohang Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- Correspondence: (X.L.); (W.Y.); Tel.: +86-022-5979-1833 (W.Y.)
| |
Collapse
|
12
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
13
|
Xu J, Cao Z, Ji C, Zhou L, Yan X, Sun Y, Ma J. Analysis of Interaction Network Between Host Protein and M Protein of Swine Acute Diarrhea Syndrome Coronavirus. Front Microbiol 2022; 13:858460. [PMID: 35464981 PMCID: PMC9024367 DOI: 10.3389/fmicb.2022.858460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enterovirus that can cause acute diarrhea and death in piglets and cause serious economic losses to the pig industry. SADS-CoV membrane (M) protein mainly plays a key role in biological processes, such as virus assembly, budding, and host innate immune regulation. Understanding the interaction between M protein and host proteins is very important to define the molecular mechanism of cells at the protein level and to understand specific cellular physiological pathways. In this study, 289 host proteins interacting with M protein were identified by glutathione-S-transferase (GST) pull-down combined with liquid chromatography-mass spectrometry (LC-MS/MS), and the protein-protein interaction (PPI) network was established by Gene Ontology (GO) terms and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways analysis. Results showed that SADS-CoV M protein was mainly associated with the host metabolism, signal transduction, and innate immunity. The Co-Immunoprecipitation (CO-IP) validation results of six randomly selected proteins, namely, Rab11b, voltage-dependent anion-selective channel 1 (VDAC1), Ribosomal Protein L18 (RPL18), RALY, Ras Homolog Family Member A (RHOA), and Annexin A2 (ANXA2), were consistent with LC-MS results. In addition, overexpression of RPL18 and PHOA significantly promoted SADS-CoV replication, while overexpression of RALY antagonized viral replication. This work will help to clarify the function of SADS-CoV M protein in the life cycle of SADS-CoV.
Collapse
Affiliation(s)
- Jingya Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ze Cao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chihai Ji
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ling Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoling Yan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Yuan Sun
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jingyun Ma
| |
Collapse
|