1
|
Gupta A, Agarwal V. Inflammation as a shared mechanism of chronic stress related disorders with potential novel therapeutic targets. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8383-8394. [PMID: 38850304 DOI: 10.1007/s00210-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Stress is a subjective experience that varies across individuals depending on their sensitivity, resilience, and length of exposure to stressors. Stress may be categorised as acute (positive stress) or chronic (negative stress). Acute stress is advantageous for the human body, but chronic stress results in changes in cardiovascular, neuroendocrine, autonomic, and immunological functions, eventually causing different illnesses. The specific process relating stress to chronic stress associated diseases is still a topic of continuing debate. Inflammation has been recognised as a new and fascinating physiological mechanism that connects chronic stress and its associated illnesses. This article explored the relationships between chronic stress, inflammation, and chronic illnesses, including depression, cancer, and cardiovascular disease. This article also emphasises on various possible therapeutic targets for the management of chronic stress related illnesses by targeting inflammation, namely lipoxins and alpha7 nicotinic receptors. These therapeutic targets may be useful in developing new and safe therapies for the management of chronic stress related dysfunctions.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal, 462044, Madhya Pradesh, India
| | - Vipul Agarwal
- Ankerite College of Pharmacy, Sausheer Khera, Parvar Purab, Mohanlalganj, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Lin HL, Lin QY, Feng JN, Zheng WE, Yang C, Yuan SF. Plasma fatty acid levels and risk of non-small cell lung cancer: a large-scale prospective cohort study. Front Nutr 2024; 11:1462300. [PMID: 39376792 PMCID: PMC11457710 DOI: 10.3389/fnut.2024.1462300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) ranks among the most prevalent and lethal malignancies globally. Fatty acids (FAs) play a significant role in diverse physiological and pathological mechanisms, yet their precise involvement in NSCLC remains poorly understood. Methods This study utilized a large-scale prospective cohort of 249,132 participants, observed over an average of 12 years, to investigate the relationship between different FAs and NSCLC risk. Analytical approaches included Cox proportional hazards regression, Kaplan-Meier survival analysis, accelerated failure time (AFT) modeling, and restricted cubic spline (RCS) analysis. Results During the follow-up period, 1,460 participants were diagnosed with NSCLC. Cox regression analysis demonstrated that elevated levels of docosahexaenoic acid (DHA), linoleic acid (LA), and omega-3 were inversely associated with NSCLC risk. Kaplan-Meier curves, along with AFT models, corroborated that elevated concentrations of DHA and LA significantly delayed NSCLC onset. Additionally, RCS analysis uncovered nuanced dose-response relationships between these FAs and NSCLC. Stratified analyses highlighted variability based on smoking status, gender, and body mass index subgroups. Conclusion The concentration of specific FAs exhibits a significant association with NSCLC risk. These results offer a foundation for devising dietary FA composition adjustments aimed at reducing NSCLC risk.
Collapse
Affiliation(s)
- Hua-Long Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiu-Yan Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie-Ni Feng
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-E Zheng
- Department of Chemoradiation and Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuang Yang
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Shao-Fei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Marcus MD, Link MS. Omega-3 Fatty Acids and Arrhythmias. Circulation 2024; 150:488-503. [PMID: 39102482 DOI: 10.1161/circulationaha.123.065769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The pro- and antiarrhythmic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been extensively studied in preclinical and human trials. Despite early evidence of an antiarrhythmic role of n-3 PUFA in the prevention of sudden cardiac death and postoperative and persistent atrial fibrillation (AF), subsequent well-designed randomized trials have largely not shown an antiarrhythmic benefit. Two trials that tested moderate and high-dose n-3 PUFA demonstrated a reduction in sudden cardiac death, but these findings have not been widely replicated, and the potential of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to reduce arrhythmic death in combination, or as monotherapy, remains uncertain. The accumulated clinical evidence does not support supplementation of n-3 PUFA for postoperative AF or secondary prevention of AF. Several large, contemporary, randomized controlled trials of high-dose n-3 PUFA for primary or secondary cardiovascular prevention have demonstrated a small, significant, dose-dependent increased risk of incident AF compared with mineral oil or corn oil comparator. These findings were reproduced with both icosapent ethyl monotherapy and a mixed EPA+DHA formulation. The proarrhythmic mechanism of increased AF in contemporary cohorts exposed to high-dose n-3 PUFA is unknown. EPA and DHA and their metabolites have pleiotropic cardiometabolic and pro- and antiarrhythmic effects, including modification of the lipid raft microenvironment; alteration of cell membrane structure and fluidity; modulation of sodium, potassium, and calcium currents; and regulation of gene transcription, cell proliferation, and inflammation. Further characterization of the complex association between EPA, EPA+DHA, and DHA and AF is needed. Which formulations, dose ranges, and patient subgroups are at highest risk, remain unclear.
Collapse
Affiliation(s)
- Mason D Marcus
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| | - Mark S Link
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Ebright B, Duro MV, Chen K, Louie S, Yassine HN. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrinol Metab 2024; 35:745-757. [PMID: 38609814 PMCID: PMC11321946 DOI: 10.1016/j.tem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marlon V Duro
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Wattanathorn J, Thukham-Mee W. Omega-3-Rich Tuna Oil Derived from By-Products of the Canned Tuna Industry Enhances Memory in an Ovariectomized Rat Model of Menopause. Antioxidants (Basel) 2024; 13:637. [PMID: 38929077 PMCID: PMC11201088 DOI: 10.3390/antiox13060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
To increase the value of the by-products of the canned tuna industry, the memory enhancement effect and the possible mechanisms of omega-3-rich tuna oil in bilateral ovariectomized (OVX) rats were assessed. Female rats were orally given tuna oil at doses of 140, 200, and 250 mg/kg of body weight (BW) for 28 days before OVX and for 21 days continually after OVX. Memory performance was assessed every week, whereas the parameters regarding mechanisms of action were assessed at the end of the study. All doses of tuna oil enhanced memory, docosahexaenoic acid (DHA) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities but decreased cortisol, acetylcholinesterase (AChE), malondialdehyde (MDA), and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Medium and high doses of tuna oil suppressed monoamine oxidase (MAO) but increased eNOS activity. A high dose of tuna oil suppressed gamma-aminotransferase (GABA-T) but increased glutamic acid decarboxylase (GAD) and sirtuin-1. A medium dose of tuna oil decreased homocysteine (Hcys) and C-reactive protein. No change in telomere or estradiol was observed in this study. Our results suggest the memory-enhancing effect of tuna oil in an OVX rat model of menopause. The main mechanisms may involve a reduction in oxidative stress, inflammation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Ibi A, Chang C, Kuo YC, Zhang Y, Du M, Roh YS, Gahler R, Hardy M, Solnier J. Evaluation of the Metabolite Profile of Fish Oil Omega-3 Fatty Acids (n-3 FAs) in Micellar and Enteric-Coated Forms-A Randomized, Cross-Over Human Study. Metabolites 2024; 14:265. [PMID: 38786742 PMCID: PMC11123365 DOI: 10.3390/metabo14050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
This study evaluated the differences in the metabolite profile of three n-3 FA fish oil formulations in 12 healthy participants: (1) standard softgels (STD) providing 600 mg n-3 FA; (2) enteric-coated softgels (ENT) providing 600 mg n-3 FA; (3) a new micellar formulation (LMF) providing 374 mg n-3 FA. The pharmacokinetics (PKs), such as the area under the plot of plasma concentration (AUC), and the peak blood concentration (Cmax) of the different FA metabolites including HDHAs, HETEs, HEPEs, RvD1, RvD5, RvE1, and RvE2, were determined over a total period of 24 h. Blood concentrations of EPA (26,920.0 ± 10,021.0 ng/mL·h) were significantly higher with respect to AUC0-24 following LMF treatment vs STD and ENT; when measured incrementally, blood concentrations of total n-3 FAs (EPA/DHA/DPA3) up to 11 times higher were observed for LMF vs STD (iAUC 0-24: 16,150.0 ± 5454.0 vs 1498.9 ± 443.0; p ≤ 0.0001). Significant differences in n-3 metabolites including oxylipins were found between STD and LMF with respect to 12-HEPE, 9-HEPE, 12-HETE, and RvD1; 9-HEPE levels were significantly higher following the STD vs. ENT treatment. Furthermore, within the scope of this study, changes in blood lipid levels (i.e., cholesterol, triglycerides, LDL, and HDL) were monitored in participants for up to 120 h post-treatment; a significant decrease in serum triglycerides was detected in participants (~20%) following the LMF treatment; no significant deviations from the baseline were detected for all the other lipid biomarkers in any of the treatment groups. Despite a lower administered dose, LMF provided higher blood concentrations of n-3 FAs and certain anti-inflammatory n-3 metabolites in human participants-potentially leading to better health outcomes.
Collapse
Affiliation(s)
- Afoke Ibi
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| | | | - Mary Hardy
- Academy of Integrative and Holistic Medicine, San Diego, CA 92037, USA
| | - Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (A.I.)
| |
Collapse
|
8
|
Suda A, Umaru BA, Yamamoto Y, Shima H, Saiki Y, Pan Y, Jin L, Sun J, Low YLC, Suzuki C, Abe T, Igarashi K, Furukawa T, Owada Y, Kagawa Y. Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth. Sci Rep 2024; 14:4409. [PMID: 38388563 PMCID: PMC10884029 DOI: 10.1038/s41598-024-55050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akane Suda
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jiaqi Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
9
|
Shabana S, Hamouda HI, Hamadou AH, Ahmed B, Chi Z, Liu C. Marine phospholipid nanoliposomes: A promising therapeutic approach for inflammatory bowel disease: Preparation, safety, and efficacy evaluation. Colloids Surf B Biointerfaces 2024; 234:113702. [PMID: 38113752 DOI: 10.1016/j.colsurfb.2023.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Promising findings have been emerged from studies utilizing n3 polyunsaturated fatty acids (PUFA) supplementation in animal models of inflammatory bowel disease (IBD). Introduction of marine phospholipids which combine n3 PUFA with phosphatidylcholine in a nanoliposome formulation offers enhanced pharmacological efficacy due to physical stability, improved bioavailability, and specific targeting to inflamed colitis tissues. In the present study, a marine phospholipid-based nanoliposome formulation was developed and optimized, resulting in nanovesicles of approximately 107.7 ± 1.3 nm in size, 0.18 ± 0.01 PDI, and - 32.03 ± 3.16 mV ZP. The nanoliposomes exhibited spherical vesicles with stable properties upon incubation at SGF as shown by the TEM, DLS, and turbidity measurements over 3 h. MPL nanoliposomes were cytocompatible until the concentration of 500 µg/mL as per MTT assay and taken by macrophages through macropinocytosis and caveolae pathways, and demonstrated significant inhibitory activity against reactive oxygen species (ROS) in LPS-stimulated macrophages. They were also shown to be blood-compatible and safe for administration in healthy mice. In a colitis mouse model, the nanoliposomes displayed preferential distribution in the inflamed gut, delaying the onset of colitis when administered prophylactically. These findings highlight the potential of marine phospholipid nanoliposomes as a promising therapeutic approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Egyptian Ministry of Health and Population, Cairo 11516, Egypt
| | - Hamed I Hamouda
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian 116023, PR China; Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | | | - Busati Ahmed
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
10
|
Zhu M, Fan H, Deng J, Jiang K, Liao J, Zhang X, Chen Y, Yu M, Peng Z. BMI1 Silencing Liposomes Suppress Postradiotherapy Cancer Stemness against Radioresistant Hepatocellular Carcinoma. ACS NANO 2023; 17:23405-23421. [PMID: 37988576 DOI: 10.1021/acsnano.3c04636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Radiotherapy causes DNA damage by direct ionization and indirect generation of reactive oxygen species (ROS) thereby destroying cancer cells. However, ionizing radiation (IR) unexpectedly elicits metastasis and invasion of cancer cells by inducing cancer stem cells' (CSCs) properties. As BMI1 is a crucial gene that causes radioresistance and an unfavorable prognosis of hepatocellular carcinoma (HCC), BMI1 inhibitor PTC-209 has been encapsulated in a ROS-responsive liposome (LP(PTC-209)) to be temporally and spatially delivered to radioresistant HCC tissue. The ROS generated during IR was not only considered to directly cause tumor cell death but also be used as a stimulator to trigger ROS-responsive drug release from LP(PTC-209). The PTC-209 released into resistant HCC tissue under radiotherapy further led to cancer stem cell (CSC) differentiation and then recovered radiosensitivity of HCC tumor. The suppression of the radioresistant performance of LP(PTC-209) has been proved on radiosensitive and radioresistant Hepa1-6 CSC tumor models, respectively. Our study clarified the relationship between radiotherapy and cancer stemness and provided insights to achieve complete suppression of radioresistant HCC tumor by inhibiting cancer stemness.
Collapse
Affiliation(s)
- Meiyan Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haonan Fan
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Junlin Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Junbin Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenwei Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
11
|
Centanni D, Henricks PAJ, Engels F. The therapeutic potential of resolvins in pulmonary diseases. Eur J Pharmacol 2023; 958:176047. [PMID: 37742814 DOI: 10.1016/j.ejphar.2023.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.
Collapse
Affiliation(s)
- Daniel Centanni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Park J, Roh J, Pan J, Kim YH, Park CK, Jo YY. Role of Resolvins in Inflammatory and Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:1366. [PMID: 37895837 PMCID: PMC10610411 DOI: 10.3390/ph16101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain is an unpleasant experience associated with actual or potential tissue damage. Inflammatory pain alerts the body to inflammation and promotes healing; however, unresolved inflammation can lead to chronic pain. Conversely, neuropathic pain, due to somatosensory damage, can be a disease in itself. However, inflammation plays a considerable role in the progression of both types of pain. Resolvins, derived from omega-3 fatty acids, actively suppress pro-inflammatory mediators and aid in the resolution of inflammation. Resolvins alleviate various inflammatory and neuropathic pain models by reducing hypersensitivity and regulating inflammatory cytokines and glial activation in the spinal cord and dorsal root ganglia. Thus, resolvins are a promising alternative for pain management with the potential to reduce the side effects associated with conventional medications. Continued research is crucial to unlock the therapeutic potential of resolvins and integrate them into effective clinical pain management strategies. This review aimed to evaluate the literature surrounding the resolvins in inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jaeik Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Jingying Pan
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
- Department of Histology and Embryology, Medical School of Nantong University, Nantong 226007, China
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea; (J.P.); (J.R.); (J.P.); (Y.H.K.)
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
13
|
Joshi NP, Madiwale SD, Sundrani DP, Joshi SR. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023; 212:31-40. [PMID: 37059350 DOI: 10.1016/j.biochi.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder in pregnancy whose prevalence is on the rise. Reports suggest a likely association between inflammation and maternal GDM. A balance between pro and anti-inflammatory cytokines is necessary for the regulation of maternal inflammation system throughout pregnancy. Along with various inflammatory markers, fatty acids also act as pro-inflammatory molecules. However, studies reporting the role of inflammatory markers in GDM are contradictory, suggesting the need of more studies to better understand the role of inflammation in pregnancies complicated by GDM. Inflammatory response can be regulated by angiopoietins suggesting a link between inflammation and angiogenesis. Placental angiogenesis is a normal physiological process which is tightly regulated during pregnancy. Various pro and anti-angiogenic factors influence the regulation of the feto-placental vascular development. Studies evaluating the levels of angiogenic markers in women with GDM are limited and the findings are inconsistent. This review summarizes the available literature on fatty acids, inflammatory markers and angiogenesis in women with GDM. We also discuss the possible link between them and their influence on placental development in GDM.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Shweta D Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
14
|
Beyer MP, Videla LA, Farías C, Valenzuela R. Potential Clinical Applications of Pro-Resolving Lipids Mediators from Docosahexaenoic Acid. Nutrients 2023; 15:3317. [PMID: 37571256 PMCID: PMC10421104 DOI: 10.3390/nu15153317] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Docosahexaenoic acid (C22:6n-3, DHA) is the precursor of specialized pro-resolving lipid mediators (SPMs), such as resolvin, protectin, and maresin families which have been considered therapeutic bioactive compounds for human health. Growing evidence indicates that DHA and SPMs are beneficial strategies in the amelioration, regulation, and duration of inflammatory processes through different biological actions. The present review discusses the reported therapeutic benefits of SPMs on various diseases and their potential clinical applications.
Collapse
Affiliation(s)
- María Paz Beyer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile;
| | - Camila Farías
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (M.P.B.); (C.F.)
| |
Collapse
|
15
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
16
|
Szymańska P, Luzak B, Miłowska K, Golański J. The Anti-Aggregative Potential of Resolvin E1 on Human Platelets. Molecules 2023; 28:5323. [PMID: 37513197 PMCID: PMC10385542 DOI: 10.3390/molecules28145323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Resolvin E1 is a metabolite of eicosapentaenoic acid (EPA) which is one of the omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The antiplatelet properties of omega-3 PUFAs are well known, but the effect of resolvin E1 on platelets via the collagen receptors is extremely poorly reported. We investigated the effect of resolvin E1 on collagen-induced platelet aggregation, activation, and reactivity, and also platelet membrane fluidity. The ultimate and statistically significant results showed that resolvin E1 may inhibit platelet reactivity due to the reduction of collagen-induced platelet aggregation in platelet-rich plasma and isolated platelets, but not in whole blood. Also, resolvin E1 significantly reduced P-selectin exposure on collagen-stimulated platelets. Moreover, we demonstrated that resolvin E1 can maintain platelet membrane structure (without increasing membrane fluidity). The association between platelet reactivity and membrane fluidity, including resolvin E1 and collagen receptors requires further research. However, the goal of this study was to shed light on the molecular mechanisms behind the anti-aggregative effects of resolvin E1 on platelets, which are still not fully clarified. We also indicate an innovative research direction focused on further analysis and then use of omega-3 PUFAs metabolites as antiplatelet compounds for future applications in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Patrycja Szymańska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Bogusława Luzak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jacek Golański
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
17
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
18
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
19
|
Rasquel-Oliveira FS, Silva MDVD, Martelossi-Cebinelli G, Fattori V, Casagrande R, Verri WA. Specialized Pro-Resolving Lipid Mediators: Endogenous Roles and Pharmacological Activities in Infections. Molecules 2023; 28:5032. [PMID: 37446699 DOI: 10.3390/molecules28135032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
20
|
Borgonovi SM, Iametti S, Di Nunzio M. Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 2023; 12:1283. [PMID: 37372014 DOI: 10.3390/antiox12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that benefits the prevention of chronic diseases. Due to its high unsaturation, DHA is vulnerable to free radical oxidation, resulting in several unfavorable effects, including producing hazardous metabolites. However, in vitro and in vivo investigations suggest that the relationship between the chemical structure of DHA and its susceptibility to oxidation may not be as clear-cut as previously thought. Organisms have developed a balanced system of antioxidants to counteract the overproduction of oxidants, and the nuclear factor erythroid 2-related factor 2 (Nrf2) is the key transcription factor identified for transmitting the inducer signal to the antioxidant response element. Thus, DHA might preserve the cellular redox status promoting the transcriptional regulation of cellular antioxidants through Nrf2 activation. Here, we systematically summarize the research on the possible role of DHA in controlling cellular antioxidant enzymes. After the screening process, 43 records were selected and included in this review. Specifically, 29 studies related to the effects of DHA in cell cultures and 15 studies concerned the effects of consumption or treatment with DHA in animal. Despite DHA's promising and encouraging effects at modulating the cellular antioxidant response in vitro/in vivo, some differences observed among the reviewed studies may be accounted for by the different experimental conditions adopted, including the time of supplementation/treatment, DHA concentration, and cell culture/tissue model. Moreover, this review offers potential molecular explanations for how DHA controls cellular antioxidant defenses, including involvement of transcription factors and the redox signaling pathway.
Collapse
Affiliation(s)
- Sara Margherita Borgonovi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
21
|
Arias Z, Nizami MZI, Chen X, Chai X, Xu B, Kuang C, Omori K, Takashiba S. Recent Advances in Apical Periodontitis Treatment: A Narrative Review. Bioengineering (Basel) 2023; 10:bioengineering10040488. [PMID: 37106675 PMCID: PMC10136087 DOI: 10.3390/bioengineering10040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches.
Collapse
Affiliation(s)
- Zulema Arias
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mohammed Zahedul Islam Nizami
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China
| | - Xiaoting Chen
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xinyi Chai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Bin Xu
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Canyan Kuang
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
22
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
23
|
Barquilha G, Dos Santos CMM, Caçula KG, Santos VC, Polotow TG, Vasconcellos CV, Gomes-Santos JAF, Rodrigues LE, Lambertucci RH, Serdan TDA, Levada-Pires AC, Hatanaka E, Cury-Boaventura MF, de Freitas PB, Pithon-Curi TC, Masi LN, Barros MP, Curi R, Gorjão R, Hirabara SM. Fish Oil Supplementation Improves the Repeated-Bout Effect and Redox Balance in 20-30-Year-Old Men Submitted to Strength Training. Nutrients 2023; 15:1708. [PMID: 37049548 PMCID: PMC10096819 DOI: 10.3390/nu15071708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Herein, we investigated the effect of fish oil supplementation combined with a strength-training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in untrained young men. Sixteen men were divided into two groups, supplemented or not with fish oil, and they were evaluated at the pre-training period and post-training period. We investigated changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic exercises at baseline (pre-training period) and decreased during the post-training period in the control group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction and improved the redox state. In summary, our findings demonstrate that, in untrained young men submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox imbalance induced by a single session of intense strength exercises, highlighting this supplementation as a beneficial strategy for young men that intend to engage in strength-training programs.
Collapse
Affiliation(s)
- Gustavo Barquilha
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cesar Miguel Momesso Dos Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- ENAU Faculty, Ribeirão Pires 09424-130, Brazil
- United Metropolitan Colleges, Centro Universitário FMU, Sao Paulo 01503-001, Brazil
| | - Kim Guimaraes Caçula
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Vinícius Coneglian Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tatiana Geraldo Polotow
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Cristina Vardaris Vasconcellos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - José Alberto Fernandes Gomes-Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Luiz Eduardo Rodrigues
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Adriana Cristina Levada-Pires
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Maria Fernanda Cury-Boaventura
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Paulo Barbosa de Freitas
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
- Instituto Butantan, Sao Paulo 05503-900, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| |
Collapse
|
24
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
25
|
Nshimiyimana R, Glynn SJ, Serhan CN, Petasis NA. Stereocontrolled total synthesis of Resolvin D4 and 17( R)-Resolvin D4. Org Biomol Chem 2023; 21:1667-1673. [PMID: 36345797 PMCID: PMC9974885 DOI: 10.1039/d2ob01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The total synthesis of Resolvin D4 and its 17(R)-hydroxy-epimer is reported. These lipid-based natural products are biosynthesized from docosahexaenoic acid (DHA, C22:6) during the body's rapid cellular and chemical response to injurious stimuli and are part of a large class of bioactive molecules that resolve inflammation. Our convergent synthesis employed a chiral pool strategy starting from glycidol derivatives and D-erythrose to introduce stereogenic centers. A copper(I)-mediated cross coupling between propargyl bromide and terminal acetylenic precursors yielded core structures of late-stage key intermediates. A simultaneous Lindlar reduction of the skipped diynyl moiety followed by silyl group cleavage securely completed the synthesis. The synthetic availability of these molecules helped further elucidate their stereoselective biofunctions.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Glynn
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
26
|
Christifano DN, Chollet-Hinton L, Mathis NB, Gajewski BJ, Carlson SE, Colombo J, Gustafson KM. DHA Supplementation During Pregnancy Enhances Maternal Vagally Mediated Cardiac Autonomic Control in Humans. J Nutr 2023; 152:2708-2715. [PMID: 35953431 PMCID: PMC9839999 DOI: 10.1093/jn/nxac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND DHA is an essential omega-3 (ω-3; n-3) fatty acid that has well-established benefits for the fetus. DHA also has the potential to influence the health of the mother, but this area is understudied. OBJECTIVES The objective of this secondary analysis was to determine if DHA was related to maternal heart rate (HR) and heart rate variability (HRV) metrics in a large cohort of pregnant women. METHODS In the parent trial (1R01HD086001) eligible participants (≥18 y old, English speaking, carrying a singleton pregnancy, 12-20 wk of gestation) were randomly assigned to consume 200 mg/d or 800 mg/d DHA for the duration of their pregnancy (n = 300). Weight, blood pressure, and magnetocardiograms (MCGs) were collected at 32 wk and 36 wk of gestation (n = 221). Measures of HR and HRV in time-, frequency-, and nonlinear-domains were determined from the isolated maternal MCG. Treatment group and timepoint were examined as predictors in association with HR and HRV metrics using random-intercept mixed-effects ANOVA unadjusted and adjusted models accounting for weight and dietary DHA intake. RESULTS Women receiving the higher dose of DHA (800 mg/d) during pregnancy had lower HR, lower sympathetic index, higher vagally mediated HRV indices, and greater HRV complexity when compared with the women who received the lower dose (200 mg/d; all P < 0.05). All the dose relations remained significant even after controlling for the effect of time, maternal weight, and dietary DHA intake. CONCLUSIONS DHA supplementation increases vagal tone in pregnant women. Longitudinal studies examining the potential link between DHA, enhanced vagal tone, and reported reduction in early preterm birth are warranted.
Collapse
Affiliation(s)
- Danielle N Christifano
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lynn Chollet-Hinton
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nicole B Mathis
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Byron J Gajewski
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Colombo
- Department of Psychology, Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| | - Kathleen M Gustafson
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
27
|
Burdge GC. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022; 57:267-287. [PMID: 35908848 DOI: 10.1002/lipd.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/20/2023]
Abstract
α-linolenic acid (αLNA) conversion into the functionally important ω-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has been regarded as inadequate for meeting nutritional requirements for these PUFA. This view is based on findings of small αLNA supplementation trials and stable isotope tracer studies that have been interpreted as indicating human capacity for EPA and, in particular, DHA synthesis is limited. The purpose of this review is to re-evaluate this interpretation. Markedly differing study designs, inconsistent findings and lack of trial replication preclude robust consensus regarding the nutritional adequacy of αLNA as a source of EPC and DHA. The conclusion that αLNA conversion in humans is constrained is inaccurate because it presupposes the existence of an unspecified, higher level of metabolic activity. Since capacity for EPA and DHA synthesis is the product of evolution it may be argued that the levels of EPA and DHA it maintains are nutritionally appropriate. Dietary and supra-dietary EPA plus DHA intakes confer health benefits. Paradoxically, such health benefits are also found amongst vegetarians who do not consume EPA and DHA, and for whom αLNA conversion is the primary source of ω-3 PUFA. Since there are no reported adverse effects on health or cognitive development of diets that exclude EPA and DHA, their synthesis from αLNA appears to be nutritionally adequate. This is consistent with the dietary essentiality of αLNA and has implications for developing sustainable nutritional recommendations for ω-3 PUFA.
Collapse
Affiliation(s)
- Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
28
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|
29
|
Jiang W, Wang X, Su S, Du S, Song H. Identifying the shared genes and KEGG pathways of Resolvin D1-targeted network and osteoarthritis using bioinformatics. Bioengineered 2022; 13:9839-9854. [PMID: 35436417 PMCID: PMC9161845 DOI: 10.1080/21655979.2022.2061288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease characterized by the loss of articular cartilage, which causes loss of joint function and reduce quality of life. Resolvin D1 (RvD1) has shown interesting anti-inflammatory effects; however, the mechanism of action of RvD1 in OA remains unclear. The aim of this study was to investigate the potential mechanism of RvD1 in OA by bioinformatics and partial in vitro mechanisms. Here, 106 shared differentially expressed genes (DEGs) were identified based on the GSE82107, GSE55235, GSE55457 dataset; 700 DEGs were identified based on GSE169077. Enrichment analyses of these genes were then successively conducted. RvD1-targeted genes and KEGG pathways are identified by STITCH. 27 shared KEGG pathways were identified among RvD1-targeted pathways and OA. Furthermore, cell apoptosis assay, western blotting, real-time fluorescent quantitative PCR (qRT-PCR), enzyme linked immunosorbent assay (ELISA) were used to confirm the expression levels of the key genes of shared Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between RvD1-targeted and OA in IL-1β treated rat knee chondrocytes. The results showed that RvD1-targeted pathways and the expression of nuclear p65, p53, and p-JNK were inhibited in the RvD1 group compared with the IL-1β group. Thus, the findings indicate that RvD1 may inhibit the development of OA through NF/kB, p53, MAPK/JNK, PI3K-AKT signaling pathways, and act as a treatment for OA.
Collapse
Affiliation(s)
- Wenjun Jiang
- Department of Sports Medicine and Rehabilitation, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Xiaoying Wang
- Department of Sports Medicine and Rehabilitation, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Siwei Su
- Department of Sports Medicine and Rehabilitation, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Sen Du
- Department of Sports Medicine and Rehabilitation, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Hongqiang Song
- Department of Sports Medicine and Rehabilitation, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|