1
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Tsantila EM, Esslinger N, Christou M, Papageorgis P, Neophytou CM. Antioxidant and Anticancer Activity of Vitis vinifera Extracts in Breast Cell Lines. Life (Basel) 2024; 14:228. [PMID: 38398737 PMCID: PMC10890198 DOI: 10.3390/life14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Vitis vinifera extracts have been shown to possess antioxidant activity because of their polyphenol content. In addition, their therapeutic potential against several diseases, including cancer, has been reported. In this study, we produced twelve extracts from the seeds, fruit, leaves, and wood of the Vitis vinifera Airen variety using different extraction methodologies and measured their total polyphenol content (TPC). We also determined their antioxidant and antiproliferative effects against normal cells and evaluated the most potent extract against a panel of breast cancer cell lines. We found that the extracts produced by the seeds of Vitis vinifera had a higher TPC compared to the other parts of the plant. Most extracts produced from seeds had antioxidant activity and did not show cytotoxicity against normal breast cells. The extract produced from whole organic seeds of white grape showed the best correlation between the dose and the ROS inhibition at all time points compared to the other seed extracts and also had antiproliferative properties in estrogen-receptor-positive MCF-7 breast cancer cells. Its mechanism of action involves inhibition of proteins Bcl-2, Bcl-xL, and survivin, and induction of apoptosis. Further investigation of the constituents and activity of Vitis vinifera extracts may reveal potential pharmacological applications of this plant.
Collapse
Affiliation(s)
- Evgenia Maria Tsantila
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Nils Esslinger
- Department of Research and Development, Alpinamed AG, 9306 Freidorf, Switzerland;
| | - Maria Christou
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus; (M.C.); (P.P.)
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus; (M.C.); (P.P.)
| | - Christiana M. Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| |
Collapse
|
3
|
Rahmani R, Debouba M, Aydi SS, Aydi S, Bouajila J. Comparative Analysis of Organic Extracts Bioactivity from Two Limonium. Mill Species Growing Wild in Tunisian Salty Marshes. Chem Biodivers 2023; 20:e202301177. [PMID: 37926684 DOI: 10.1002/cbdv.202301177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Limonium. Mill is a genus of flowering plants belonging to the Plumbaginaceae family. The present study aimed to compare two Limonium species (L. pruinosum Kuntze and L. tunetanum (Barratte & Bonnet) Maire) in terms of their chemical composition and bioactivity. Chemical profiling showed that the methanolic (MeOH) extracts of both species were the most enriched with total phenolic (TP) and total flavonoid (TF) contents. The TFC were higher in L. tunetanum compared to L. pruinosum. HPLC-DAD analysis showed that distinctly the gallic acid and L-tyrosine 7-amido-4-methylcoumarin were the main compounds for L. pruinosum and L. tunetanum, respectively. For both Limonium. Mil species, the MeOH extracts displayed the highest antioxidant with IC50 of 7.7 and 8.4 μg/mL for L. pruinosum and L. tunetanum, respectively. The highest anti-15-lipoxygnase activity was recorded in the ethyl acetate (IC50 =14.2 μg/mL) and Methanol (IC50 =15.6 μg/mL) extracts for L. pruinosum. However, for L. tunetanum the best activity was recorded for dichloromethane extract (IC50 =10.4 μg/mL). L. pruinosum extracts displayed the highest cytotoxic activity against MCF-7 and HCT-116 cell lines compared to L. tunetanum ones. The obtained bioactivity discrepancy between Limonium. Mill species was discussed in relation to the organic extract chemical richness.
Collapse
Affiliation(s)
- Rami Rahmani
- Laboratoire de recherche Biodiversité, Molécules et Applications LR22ES02, Institut supérieur de biologie appliquée, Université de Gabés, Tunisia
| | - Mohamed Debouba
- Laboratoire de recherche Biodiversité, Molécules et Applications LR22ES02, Institut supérieur de biologie appliquée, Université de Gabés, Tunisia
| | - Sameh Sassi Aydi
- Laboratory of biodiversity and valorisation of bioresources in arid zones. Faculty of Sciences at the University of Gabes, Zrig, 6072, Gabes, Tunisia
| | - Samir Aydi
- Laboratory of biodiversity and valorisation of bioresources in arid zones. Faculty of Sciences at the University of Gabes, Zrig, 6072, Gabes, Tunisia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Paul Sabatier, CNRS, INPT, UPS, France
| |
Collapse
|
4
|
Sharafan M, Malinowska MA, Kubicz M, Kubica P, Gémin MP, Abdallah C, Ferrier M, Hano C, Giglioli-Guivarc’h N, Sikora E, Lanoue A, Szopa A. Shoot Cultures of Vitis vinifera (Vine Grape) Different Cultivars as a Promising Innovative Cosmetic Raw Material-Phytochemical Profiling, Antioxidant Potential, and Whitening Activity. Molecules 2023; 28:6868. [PMID: 37836711 PMCID: PMC10574137 DOI: 10.3390/molecules28196868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.
Collapse
Affiliation(s)
- Marta Sharafan
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Magdalena Anna Malinowska
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Marta Kubicz
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| | - Paweł Kubica
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| | - Marin-Pierre Gémin
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Cécile Abdallah
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Manon Ferrier
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Universite d’Orleans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France
| | - Nathalie Giglioli-Guivarc’h
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Elżbieta Sikora
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland;
| | - Arnaud Lanoue
- EA 2106 Biomolecules et Biotechnologies Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France; (M.-P.G.); (C.A.); (M.F.); (N.G.-G.); (A.L.)
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland; (M.S.); (M.K.); (P.K.)
| |
Collapse
|
5
|
Ayadi J, Debouba M, Rahmani R, Bouajila J. The Phytochemical Screening and Biological Properties of Brassica napus L. var. napobrassica (Rutabaga) Seeds. Molecules 2023; 28:6250. [PMID: 37687079 PMCID: PMC10488400 DOI: 10.3390/molecules28176250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Rutabaga, also known as swede and scientifically classified as Brassica napus napobrassica, is a biennial edible root vegetable that belongs to the Brassica genus and is widely cultivated in North Europe and North America. The present study highlights both the phytochemical profile and the in vitro biological properties of rutabaga seed extracts obtained through maceration using solvents of increasing polarity, namely, cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH), and water (H2O). HPLC-DAD was used to identify and quantify phenolic compounds, while volatile compounds were detected using GC-MS. The in vitro antioxidant capacity of the rutabaga seed extracts was evaluated through DPPH free radical scavenging activity. The in vitro anti-inflammatory activity (15-lipoxygenase (15-LOX) enzyme) was determined spectrophotometrically at the same concentration. Additionally, the cytotoxicity of the seed extracts was evaluated against human colon adenocarcinoma cells (Caco-2) and human embryonic kidney cells (HEK-293) using the MTT assay. The rutabaga seed extracts obtained from EtOAc, MeOH, and H2O were particularly rich in reducing sugars, ranging from 189.87 to 473.75 mg/g DW. The MeOH extract displayed the highest concentration of both sugars and polyphenols. Phytochemically, the HPLC-DAD analysis revealed the presence of four phenolic compounds in the tested extracts, including (±) synephrine, gallic acid, p-coumaric acid, and trans-ferulic acid, newly discovered in rutabaga organs. Moreover, a total of ten volatile compounds were identified through GC-MS analysis, both before and after derivatization. At a concentration of 50 µg/mL, the methanol extract exhibited high antioxidant activity with 52.95% inhibition, while CYHA, DCM, and EtOAc exhibited moderate anti-15-LOX activity with less than 30% inhibition. Except for DCM and aqueous extracts, rutabaga seeds did not exhibit any anti-proliferative potential against Caco-2 cell lines. Interestingly, no cytotoxicity was registered for any of the seed extracts against the normal cell line HEK-293. Overall, the obtained data highlight the potential utilization of rutabaga seeds as a source of bioactive compounds in various fields, including pharmaceuticals, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Jawaher Ayadi
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France
| | - Mohamed Debouba
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
| | - Rami Rahmani
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Zrig, Gabès 6072, Tunisia; (J.A.); (R.R.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062 Toulouse, France
| |
Collapse
|
6
|
Ben Khadher T, Sassi-Aydi S, Aydi S, Mars M, Bouajila J. Phytochemical Profiling and Biological Potential of Prunus dulcis Shell Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2733. [PMID: 37514346 PMCID: PMC10385037 DOI: 10.3390/plants12142733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Prunus dulcis is one of the most widely cultivated species in the world. Its fruit (almond) is rich in various nutritious and bioactive compounds that exert several beneficial effects. The aim of this study was to determine the chemical profile and evaluate the biological potential in vitro of almond shell extracts. The chemical analysis of shell extracts led to the identification of 15 compounds by HPLC-DAD, of which 11 were first detected in the almond plant. Twenty-six volatile compounds were identified by the GC-MS technique; among them, seven were firstly detected in the studied plant. For the biological activities, the extracts demonstrated moderate inhibition potential against the antioxidant, antidiabetic, and cytotoxic activities. The methanol extract at 50 µg/mL showed the highest antioxidant (45%) and antidiabetic activities (45% against alpha-glucosidase and 31% against alpha-amylase extracts), while the cyclohexane and dichloromethane at 50 µg/mL showed the highest cytotoxic activity towards Hela (32.2% with cyclohexane) and RAW 264-7 (45% with dichloromethane). Overall, these findings demonstrate the potential of almond shell extracts as a source of bioactive compounds that could be applied in the pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Talel Ben Khadher
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia
| | - Sameh Sassi-Aydi
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia
| | - Samir Aydi
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Bioressources in Arid Zones, Faculty of Sciences, The University of Gabes, Zrig, Gabes 6072, Tunisia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
| |
Collapse
|
7
|
Idoudi S, Othman KB, Bouajila J, Tourrette A, Romdhane M, Elfalleh W. Influence of Extraction Techniques and Solvents on the Antioxidant and Biological Potential of Different Parts of Scorzonera undulata. Life (Basel) 2023; 13:904. [PMID: 37109433 PMCID: PMC10140856 DOI: 10.3390/life13040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The genus Scorzonera has various medicinal values. Species belonging to this genus were traditionally used as drugs or in food. The current study aimed to determine the phytochemical composition, antioxidant activity, and biological properties of the tuber, leaf, and flower of Scorzonera undulata extracts, collected from the southwest of Tunisia. Phenolic compounds from the three parts were extracted using two solvents (water and ethanol) and two extraction techniques (maceration and ultrasound). The total phenolic content was measured by the Folin-Ciocalteu assay. Furthermore, the chemical composition of Scorzonera undulata extract was also investigated by the LC-ESI-MS method using phenolic acid and flavonoid standards. The variation of the extraction methods induced a variation in the real potentialities of the three parts in terms of bioactive molecules. However, the aerial part of S. undulata (leaves and flowers) showed, in general, the highest phenolic contents. Twenty-five volatile compounds have been detected by GC-MS in S. undulata extracts; among them, fourteen were identified before derivatization. The DPPH test showed that the aerial part of the plant has a higher antioxidant activity compared to the tuber (25.06% at 50 µg/mL for the leaf ethanolic extract obtained by ultrasound extraction). For most biological activities (anti-Xanthine, anti-inflammatory, and antidiabetic (alpha-amylase and alpha-glucosidase)), the aerial parts (flowers and leaves) of the plant showed the highest inhibition than tubers.
Collapse
Affiliation(s)
- Sourour Idoudi
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
- CIRIMAT, Faculté des Sciences Pharmaceutiques, Université de Toulouse, 35 Chemin des Maraîchers, 31400 Toulouse, France;
| | - Khadija Ben Othman
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France;
| | - Audrey Tourrette
- CIRIMAT, Faculté des Sciences Pharmaceutiques, Université de Toulouse, 35 Chemin des Maraîchers, 31400 Toulouse, France;
| | - Mehrez Romdhane
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia; (S.I.); (K.B.O.); (M.R.)
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, UR22ES04, Higher Institute of Applied Sciences and Technology of Gabes (ISSATG), University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
8
|
Aydi S, Sassi Aydi S, Marsit A, El Abed N, Rahmani R, Bouajila J, Merah O, Abdelly C. Optimizing Alternative Substrate for Tomato Production in Arid Zone: Lesson from Growth, Water Relations, Chlorophyll Fluorescence, and Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1457. [PMID: 37050083 PMCID: PMC10096997 DOI: 10.3390/plants12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Soilless culture is considered the mostpromising, intensive, and sustainable approach with various advantages for plant production in terms of saving water and nutrients. It can provide consumers with sufficient and high-quality food. However, the commonly used growing substrate for soilless cultivation, coconut fiber (CF), is usually imported and expensive or even unavailable. The objectives of this study were to investigate the impact of local organic farm resources substrates on tomato (Solanum lycopersicum L.) plant growth, water relations, photosynthesis, chlorophyll fluorescence, and phytochemical analysis of fruits in a hydroponics culture system. Two growth substrates were evaluated: date-palm waste composted with animal manure (7:3 w/w) (DPAM) and date-palm trunk compost (DPT). CF and local soil were utilized as positive and negative controls, respectively, in randomized blocks. The results revealed that DPAM substrate enhanced plant growth and physiology: shoot development, leaves tissues hydration, and photosynthetic parameters, as well as chlorophyll fluorescence. However, DPT and CF improved fruit quality: water, mineral, sugar, and protein content. The antioxidant activity of the fruit extract was the greater in DPAM, reaching 13.8 mg GAEg-1 DW. This value wasdecreased in soil by 40%. Photosynthesis activity was the most important in DPAM with 12 µmol CO2 m-2 s-1, and only 6.4 µmol CO2 m-2 s-1 in the soil condition. However, regarding the non-photochemical quenching, the dissipated light energy was greater in soil (0.096 ± 0.02) than in DPAM (0.025 ± 0.04). Date-palm waste-based substrates improved tomato vegetative growth and fruit quality as compared to soil-based culture. Date-palm waste-based substrates supplemented with manure appear to be promising and less expensive alternatives to the coconut fiber substrate extensively used in soilless crops in North Africa.
Collapse
Affiliation(s)
- Samir Aydi
- Laboratory of Biodiversity and Valorisationof Bioresources in Arid Zones (LR18ES36), Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| | - Sameh Sassi Aydi
- Laboratory of Biodiversity and Valorisationof Bioresources in Arid Zones (LR18ES36), Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| | - Asma Marsit
- Laboratory of Biodiversity and Valorisationof Bioresources in Arid Zones (LR18ES36), Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| | - Nadia El Abed
- Technical Center of Protected and Geothermal Crops, Avenue AboulkacemChabbiCité El Manara, Gabes 6011, Tunisia
| | - Rami Rahmani
- Laboratory of Biodiversity of Actives Biomolecules (LR22ES02), Higher Institute of Applied Biology Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France
| | - Othmane Merah
- Laboratoire de ChimieAgro-Industrielle (LCA), Université de Toulouse, INRAe, INPT, 31030 Toulouse, France
- Département Génie Biologique, IUTA, Université Paul Sabatier, 32000 Auch, France
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Center of Biotechnology of BorjCedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
9
|
Nieto JA, Fernández-Jalao I, Siles-Sánchez MDLN, Santoyo S, Jaime L. Implication of the Polymeric Phenolic Fraction and Matrix Effect on the Antioxidant Activity, Bioaccessibility, and Bioavailability of Grape Stem Extracts. Molecules 2023; 28:molecules28062461. [PMID: 36985434 PMCID: PMC10051231 DOI: 10.3390/molecules28062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The bioaccessibility and bioavailability of phenolics compounds of two grape stem extracts with different composition were studied. High polymeric extract (HPE) presented a higher content of total phenolics (TPC), procyanidins, hemicelluloses, proteins, and ashes, whereas low procyanidin extract (LPE) showed a higher fat, soluble sugars, and individual phenolic compounds content. Corresponding to its higher total phenolics content, HPE possesses a higher antioxidant activity (TEAC value). The digestion process reduced the antioxidant activity of the HPE up to 69%, due to the decrease of TPC (75%) with a significant loss of polymeric compounds. LPE antioxidant activity was stable, and TPC decreased by only 13% during the digestion process. Moreover, a higher antioxidant phenolic compounds bioavailability was shown in LPE in contrast to HPE. This behaviour was ascribed mainly to the negative interaction of polymeric fractions and the positive interaction of lipids with phenolic compounds. Therefore, this study highlights the convenience of carrying out previous studies to identify the better extraction conditions of individual bioavailable phenolic compounds with antioxidant activity, along with those constituents that could increase their bioaccessibility and bioavailability, such as lipids, although the role played by other components, such as hemicelluloses, cannot be ruled out.
Collapse
Affiliation(s)
- Juan Antonio Nieto
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Irene Fernández-Jalao
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - María de Las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Autonomous University of Madrid (Universidad Autónoma de Madrid (CEI UAM + CSIC)), 28049 Madrid, Spain
| |
Collapse
|
10
|
Sassi Aydi S, Aydi S, Ben Khadher T, Ktari N, Merah O, Bouajila J. Polysaccharides from South Tunisian Moringa alterniflora Leaves: Characterization, Cytotoxicity, Antioxidant Activity, and Laser Burn Wound Healing in Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:229. [PMID: 36678943 PMCID: PMC9863075 DOI: 10.3390/plants12020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Phytochemical properties have recently increased the popularity of plant polysaccharides as wound dressing materials. This work aims at studying the structural characteristics of polysaccharides extracted from Moringa leaves (Moringa Leaves Water Soluble Polysaccharide: MLWSP), and its antioxidant activities, cytotoxic effects, and laser burn wound healing effects in rats. This MLWSP was structurally characterized. Results showed 175.21 KDa and 18.6%, respectively, for the molecular weight and the yield of the novel extracted polysaccharide. It is a hetero-polysaccharide containing arabinose, rhamnose, and galactose. XRD suggested a semi-crystalline structure of the studied polymer and FT-IR results revealed a typical polysaccharide structure. It is composed of 50 to 500 µm rocky-shaped units with rough surfaces and it was found to inhibit the proliferation of the human colon (HCT-116) (IC50 = 36 ± 2.5 µg/mL), breast (MCF-7) (IC50 = 48 ± 3.2), and ovary cancers (IC50 = 24 ± 8.1). The MLWSP showed significant antioxidant effects compared to Trolox (CI50 = 0.001 mg/g). Moreover, promising wound healing results were displayed. The effect of MLWSP hydrogel application on laser burn injuries stimulated wound contraction, re-epithelization, and remodeling phases 8 days after treatment. The wound healing potential of MLWSP may be due to its significant antioxidant activity and/or the huge amount of monosaccharide molecules.
Collapse
Affiliation(s)
- Sameh Sassi Aydi
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Samir Aydi
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Talel Ben Khadher
- Laboratory of Biodiversity and Valorisation of Bioresources in Arid Zones (LR18ES36), Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax 3038, Tunisia
- Department of Life Sciences, Faculty of Sciences at the University of Gabes, Gabes 6072, Tunisia
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAe, INPT, F-31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier, IUT A, F-32000 Auch, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, F-31062 Toulouse, France
| |
Collapse
|
11
|
Bouslamti M, Metouekel A, Chelouati T, El Moussaoui A, Barnossi AE, Chebaibi M, Nafidi HA, Salamatullah AM, Alzahrani A, Aboul-Soud MAM, Bourhia M, Lyoussi B, Benjelloun AS. Solanum elaeagnifolium Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches. Molecules 2022; 27:8688. [PMID: 36557821 PMCID: PMC9783650 DOI: 10.3390/molecules27248688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains-most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between -5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.
Collapse
Affiliation(s)
- Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF) Route de Meknes, Fez 30000, Morocco
| | - Tarik Chelouati
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez 30070, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Badiaa Lyoussi
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ahmed Samir Benjelloun
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|