1
|
Wang N, Xie L, Tian L. Analysis of Antioxidant Properties and Compounds in Different Rosa Taxa Fruits Using UV-Vis and UPLC-TQ-MS Techniques. Chem Biodivers 2024; 21:e202401029. [PMID: 39135377 DOI: 10.1002/cbdv.202401029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
This comprehensive analysis of the fruits of Rosa spp. (FR) evaluates their chemical components and antioxidant activity. The study quantified total flavonoids and polyphenols using aluminum trichloride colorimetric assay and Folin-Ciocalteu methods, with the fruit of Rosa. laxa Rtez. var. mollis Yü et Ku. sample exhibiting the highest concentrations of 59.21 mg/g and 81.13 mg/g, respectively. Ultra-High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-TQ-MS) assessed seven primary components, with notable levels of euscaphic acid, ursolic acid, and gallic acid. Antioxidant activities were tested using DPPH and ABTS methods, showing strong activities in samples the fruits of Rosa. persica Mickx ex Juss. and Rosa. laxa Rtez. var. kaschgarica (Rupr.) Y. L. Han. Chemometric analyses, including similarity, cluster, principal component, and grey relational analyses, were used to explore relationships between FR varieties and their antioxidant properties. The study provides a vital basis for future FR quality assessments.
Collapse
Affiliation(s)
- Ning Wang
- Liaoning Provincial Tumor Hospital, Affiliated Tumor Hospital of Dalian University of Technology, Shenyang, Liaoning province, China
- Department of Medicine, Dalian University of Technology, Dalian, Liaoning province, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong province, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi Xinjiang province, China
| | - Li Xie
- Medical Faculty, Kashi University, Kashi Xinjiang province, China
| | - Li Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi Xinjiang province, China
| |
Collapse
|
2
|
Ghasemi G, Fattahi M, Alirezalu A. Screening genotypes and optimizing ultrasonic extraction of phenolic antioxidants from Rheum ribes using response surface methodology. Sci Rep 2024; 14:21544. [PMID: 39278966 PMCID: PMC11402989 DOI: 10.1038/s41598-024-72214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
The flowers and stems of Rhubarb (Rheum ribes L.) are known to contain effective antioxidant compounds that have potential antidiarrheal properties in traditional medicine. This study was conducted to screen various genotypes of Rhubarb for their phytochemical and antioxidant activity and optimize the extraction parameters using the response surface methodology (RSM). The study found high diversity among the different genotypes (G1-G13) in terms of their flowers and stems. The total phenolic content (TPC) in the flowers of R. ribes varied significantly, showing values between 9.80 and 81.53 mg GAE g-1 DW. In the stems, TPC ranged from 2.87 to 16.33 mg GAE g-1 DW. Similarly, the total flavonoid content (TFC) in the flowers ranged from 0.33 to 1.32 mg Qu g-1 DW, while in the stems, it was between 0.05 and 0.38 mg Qu g-1 DW. The antioxidant activity, indicated as µmol Fe2+ g-1 DW, varied from 7.42 to 59.87 in the flowers and from 0.14 to 15.99 in the stems. Hierarchical cluster analysis (HCA) identified five distinct clusters among the collected genotypes. Subsequent analysis of variance and principal components analysis (PCA) revealed that the flowers of G8 (G8F) from Tehran to Lavasan exhibited the highest total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (FRAP). Given these findings, G8F was chosen for further optimization in the study. The RSM was designed based on a Box-Behnken design (BBD) to determine the optimal extraction conditions, including extraction temperature (30-80 °C), extraction time (5-15 min), and ethanol concentration (25-75%, ethanol to water, v/v). The responses measured were total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and Ferric reducing/antioxidant power (FRAP) assays. The optimal extraction conditions for all responses or desirability indices were X1: 80 °C, X2: 15 min, and X3: 53.14%, which resulted in TPC (99.32 mg GAE.g-1 DW), TFC (3.00 mg Qu.g-1 DW), TAC (1.12 mg cyanidin-3-glucoside (Cy-g) g-1 DW), FRAP (110.22 µmol Fe+2/g DW), and DPPHsc (88.20%). The R2 values (0.91-0.99) indicated that the RSM models were acceptable.
Collapse
Affiliation(s)
- Ghader Ghasemi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Fattahi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Singh T, Pandey VK, Singh R, Dash KK, Kovács B, Mukarram SA. Ultrasound assisted extraction of phytochemicals from Piper betel L. ULTRASONICS SONOCHEMISTRY 2024; 106:106894. [PMID: 38729035 PMCID: PMC11107348 DOI: 10.1016/j.ultsonch.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Piper betel contains phytochemicals with diverse pharmacological effects. The objective of this study was to enhance the extraction efficiency of phytochemicals and the chlorophyll content using ultrasonication. The Box-Behnken design was employed to optimize the time (10, 20, 30 min), temperature (20, 30, and 40 °C), and solid-solvent ratio (1:10, 1:20, 1:30) by utilizing response surface methods with three independent variables. Multiple parameters, including extract yield, total phenol, total flavonoid, antioxidant activity, and chlorophyll content were used to optimize the conditions. The linear relationship between power intensity and responses was determined to be statistically significant, with a p-value less than 0.01. The interaction effect of temperature, time, and ratio of solid solvent was shown to be statistically significant (p < 0.05) for all the obtained results. The optimal parameters for achieving the highest extract yield were as follows: a temperature of 40 °C, a sonication time of 30 min, and a solid solvent ratio of 1:10. These conditions result in an extract yield of 21.99 %, a total flavonoid content of 44.97 mg/GAE, a total phenolic content of 185.05 mg/GAE, a DPPH scavenging activity of 99.1 %, and a chlorophyll content of 49.95 mg/ml. This study highlights the significance of customized extraction methodologies for optimizing the bioactive capacity of phytochemicals derived from betel leaves. The elucidation of extraction parameters and the resultant phytochemical profiles serves as a fundamental framework for the advancement of innovative pharmaceuticals and nutraceuticals, capitalizing on the therapeutic attributes of this traditional medicinal botanical.
Collapse
Affiliation(s)
- Tripti Singh
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- RDC, Biotechnology Department, Manav Rachna International Institute of Research and Studies, Faridabad 121004 Haryana, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India.
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
4
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
5
|
Nouioura G, El Fadili M, El Barnossi A, Loukili EH, Laaroussi H, Bouhrim M, Giesy JP, Aboul-Soud MAM, Al-Sheikh YA, Lyoussi B, Derwich EH. Comprehensive analysis of different solvent extracts of Ferula communis L. fruit reveals phenolic compounds and their biological properties via in vitro and in silico assays. Sci Rep 2024; 14:8325. [PMID: 38594363 PMCID: PMC11004150 DOI: 10.1038/s41598-024-59087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/07/2024] [Indexed: 04/11/2024] Open
Abstract
Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.
Collapse
Affiliation(s)
- Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, 30 000, Fez, Morocco.
| | - Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, 30 000 Fez, Morocco
| | - Azeddin El Barnossi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, 30050, Fez, Morocco
| | - El Hassania Loukili
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes, 30 000, Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, 30 000, Fez, Morocco
| | - Mohammed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, University Sultan Moulay Slimane, 23000, Beni Mellal, Morocco
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48895, USA
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Yazeed A Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, 30 000, Fez, Morocco
| | - El Houssine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, 30 000, Fez, Morocco
- Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
6
|
T FX, R S, A K FR, S B, R K, M A, S V, S P, S A, K S, M T. Phytochemical composition, anti-microbial, anti-oxidant and anti-diabetic effects of Solanum elaeagnifolium Cav. leaves: in vitro and in silico assessments. J Biomol Struct Dyn 2024:1-27. [PMID: 38180058 DOI: 10.1080/07391102.2023.2300124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
The aim of this study was to screen the chemical components of Solanum elaeagnifolium leaves and assess their therapeutic attributes with regard to their antioxidant, antibacterial, and antidiabetic activities. The antidiabetic effects were explored to determine the α-amylase and α-glucosidase inhibitory potential of the leaf extract. To identify the active antidiabetic drugs from the extracts, the GC-MS-screened molecules were docked with diabetes-related proteins using the glide module in the Schrodinger Tool. In addition, molecular dynamics (MD) simulations were performed for 100 ns to evaluate the binding stability of the docked complex using the Desmond module. The ethyl acetate had a significant total phenolic content (TPC), with a value of 79.04 ± 0.98 mg/g GAE. The ethanol extract was tested for its minimum inhibitory concentration (MIC) for its bacteriostatic properties. It suppressed the growth of B. subtilis, E. coli, P. vulgaris, R. equi and S. epidermis at a dosage of 118.75 µg/mL. Moreover, the IC50 values of the ethanol extract were determined to be 17.78 ± 2.38 in the α-amylase and and 27.90 ± 5.02 µg/mL in α-glucosidase. The in-silico investigation revealed that cyclolaudenol achieved docking scores of -7.94 kcal/mol for α-amylase. Likewise, the α-tocopherol achieved the docking scores of -7.41 kcal/mol for glycogen phosphorylase B and -7.21 kcal/mol for phosphorylase kinase. In the MD simulations, the cyclolaudenol and α-tocopherol complexes exhibited consistently stable affinities with diabetic proteins throughout the trajectory. Based on these findings, we conclude that this plant could be a good source for the development of novel antioxidant, antibacterial, and antidiabetic agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Francis Xavier T
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sabitha R
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Freeda Rose A K
- PG and Research Department of Botany, Holy Cross College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Balavivekananthan S
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kariyat R
- Department of Biology, The University of Texas, Rio Grande Valley, W University Dr, Edinburg, TX, USA
| | - Ayyanar M
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Vijayakumar S
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Prabhu S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Amalraj S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Shine K
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thiruvengadam M
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Korea
| |
Collapse
|
7
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
8
|
Damergi B, Essid R, Fares N, Khadraoui N, Ageitos L, Ben Alaya A, Gharbi D, Abid I, Rashed Alothman M, Limam F, Rodríguez J, Jiménez C, Tabbene O. Datura stramonium Flowers as a Potential Natural Resource of Bioactive Molecules: Identification of Anti-Inflammatory Agents and Molecular Docking Analysis. Molecules 2023; 28:5195. [PMID: 37446858 DOI: 10.3390/molecules28135195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
The present study investigated the antioxidant, antibacterial, antiviral and anti-inflammatory activities of different aerial parts (flowers, leaves and seeds) of Datura stramonium. The plant material was extracted with 80% methanol for about 24 h. The sensitivity to microorganisms analysis was performed by the microdilution technique. Antioxidant tests were performed by scavenging the DPPH and ABTS radicals, and by FRAP assay. Anti-inflammatory activity was evaluated through the inhibition of nitric oxide production in activated macrophage RAW 264.7 cells. Cell viability was assessed with an MTT assay. Results show that the flower extract revealed a powerful antimicrobial capacity against Gram-positive bacteria and strong antioxidant and anti-inflammatory activities. No significant cytotoxicity to activated macrophages was recorded. High resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analysis identified two molecules with important anti-inflammatory effects: 12α-hydroxydaturametelin B and daturametelin B. Molecular docking analysis with both pro-inflammatory agents tumor necrosis factor alpha and interleukin-6 revealed that both compounds showed good binding features with the selected target proteins. Our results suggest that D. stramonium flower is a promising source of compounds with potential antioxidant, antibacterial, and anti-inflammatory activities. Isolated withanolide steroidal lactones from D. stramonium flower extract with promising anti-inflammatory activity have therapeutic potential against inflammatory disorders.
Collapse
Affiliation(s)
- Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Lucía Ageitos
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Ameni Ben Alaya
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Islem Abid
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Monerah Rashed Alothman
- Botany and Microbiology Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Jaime Rodríguez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Carlos Jiménez
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
9
|
Karmezi M, Krigas N, Papatheodorou EM, Argyropoulou MD. The Invasion of Alien Populations of Solanum elaeagnifolium in Two Mediterranean Habitats Modifies the Soil Communities in Different Ways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112193. [PMID: 37299172 DOI: 10.3390/plants12112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
We aimed to explore how the invasion of the alien plant Solanum elaeagnifolium affects soil microbial and nematode communities in Mediterranean pines (Pinus brutia) and maquis (Quercus coccifera). In each habitat, we studied soil communities from the undisturbed core of both formations and from their disturbed peripheral areas that were either invaded or not by S. elaeagnifolium. Most studied variables were affected by habitat type, while the effect of S. elaeagnifolium was different in each habitat. Compared to maquis, the soil in pines had higher silt content and lower sand content and higher water content and organic content, supporting a much larger microbial biomass (PLFA) and an abundance of microbivorous nematodes. The invasion of S. elaeagnifolium in pines had a negative effect on organic content and microbial biomass, which was reflected in most bacterivorous and fungivorous nematode genera. Herbivores were not affected. In contrast, in maquis, organic content and microbial biomass responded positively to invasion, raising the few genera of enrichment opportunists and the Enrichment Index. Most microbivores were not affected, while herbivores, mostly Paratylenchus, increased. The plants colonizing the peripheral areas in maquis probably offered a qualitative food source to microbes and root herbivores, which in pines was not sufficient to affect the much larger microbial biomass.
Collapse
Affiliation(s)
- Maria Karmezi
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Efimia M Papatheodorou
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Maria D Argyropoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Ahmad I, Narsa AC, Ramadhani MR, Zamruddin NM, Iswahyudi I, Hajrah H, Indriyanti N, Arifuddin M, Siska S, Supandi S, Ambarwati NSS. Optimization of microwave-assisted extraction on polyphenol metabolite from Eleutherine bulbosa (Mill.) urb. bulbs using response surface methodology. J Adv Pharm Technol Res 2023; 14:113-118. [PMID: 37255875 PMCID: PMC10226706 DOI: 10.4103/japtr.japtr_613_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 06/01/2023] Open
Abstract
Eleutherine bulbosa bulbs, an endemic plant in Indonesia, have enormous potential as raw materials for pharmaceutical products. Therefore, it is necessary to strengthen and develop extraction methods that are easy, rapid, and efficient to enrich targeted secondary metabolites. This study aims to optimize the microwave-assisted extraction (MAE) method conditions for polyphenol metabolite from E. bulbosa bulbs. The MAE method (with different conditions) was applied to extract total polyphenol content (TPC) from E. bulbosa bulbs. TPC values were determined using a 96-well microplate reader spectrophotometry method and Folin-Ciocalteu reagent. The variables of MAE, as an experimental design-independent variable, were involved. The MAE method condition was optimized using response surface methodology (RSM) and Box-Behnken design based on the TPC value. The MAE condition was optimized with 60% ethanol, sample-solvent ratio of 1:10 g/mL, and 50% Watts of microwave power for 10 min. The quadratic regression analysis was achieved to predict the TPC value using the equation: TPC value = 28.63-5.545A +2.211B -0.741C +1.995D - 4.045AB +0.856AC -7.541BC +1.961CD -8.342A2-0.071B2 +1.840C2-1.535D2. For the scale-up confirmation test, a 50-g sample was used to prove the validity of the equation to predict the TPC value, yielding 35.33 ± 2.13 mg gallic acid equivalent/g samples. The optimum of the MAE condition recommended based on the results of RSM analysis can be applied directly to the enrichment of polyphenols metabolite constituent of E. bulbosa easily, cheaply, quickly, and efficiently.
Collapse
Affiliation(s)
- Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
- Department of Laboratory of Pharmaceutical Research and Development “FARMAKA TROPIS,” Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Angga Cipta Narsa
- Department of Laboratory of Pharmaceutical Research and Development “FARMAKA TROPIS,” Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - M. Riki Ramadhani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Nur Masyithah Zamruddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Iswahyudi Iswahyudi
- Department of Laboratory of Pharmaceutical Research and Development “FARMAKA TROPIS,” Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Hajrah Hajrah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Niken Indriyanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - M. Arifuddin
- Department of Laboratory of Pharmaceutical Research and Development “FARMAKA TROPIS,” Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Siska Siska
- Department of Pharmacology, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. Dr. Hamka, South Jakarta, Indonesia
| | - Supandi Supandi
- Department of Chemistry, Faculty of Pharmacy and Sciences, Universitas Muhammadiyah Prof. Dr. Hamka, South Jakarta, Indonesia
| | - Neneng Siti Silfi Ambarwati
- Department of Cosmetology, Engineering Faculty and the Research Center for Cosmetics, Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas Negeri Jakarta, East Jakarta, Indonesia
| |
Collapse
|
11
|
Wu D, Xia Q, Huang H, Tian J, Ye X, Wang Y. Influence of Centrifugation and Transmembrane Treatment on Determination of Polyphenols and Antioxidant Ability for Sea Buckthorn Juice. Molecules 2023; 28:molecules28062446. [PMID: 36985418 PMCID: PMC10056822 DOI: 10.3390/molecules28062446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
When the total phenolic content (TPC) and antioxidant activity of sea buckthorn juice were assayed by spectrophotometry, the reaction solutions were not clarified, so centrifugation or membrane treatment was needed before determination. In order to find a suitable method for determining TPC and antioxidant activity, the effects of centrifugation and nylon membrane treatment on the determination of TPC and antioxidant activity in sea buckthorn juice were studied. TPC was determined by the Folin-Ciocalteau method, and antioxidant activity was determined by DPPH, ABTS, and FRAP assays. For Treatment Method (C): the sample was centrifuged for 10 min at 10,000 rpm and the supernatant was taken for analysis. Method (CF): The sample was centrifuged for 10 min at 4000 rpm, filtered by Nylon 66 filtration membranes with pore size of 0.22 μm, and taken for analysis. Method (F): the sample was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and taken for analysis. Method (N): after the sample of ultrasonic extract solution reacted completely with the assay system, the reaction solution was filtered by Nylon 66 filtration membranes with pore size of 0.22 μm and colorimetric determination was performed. The results showed that centrifugation or transmembrane treatment could affect the determination of TPC and antioxidant activity of sea buckthorn juice. There was no significant difference (p > 0.05) between methods (CF) and (F), while there was a significant difference (p < 0.05) between methods (C) (F) (N) or (C) (CF) (N). The TPC and antioxidant activity of sea buckthorn juice determined by the four treatment methods showed the same trend with fermentation time, and the TPC and antioxidant activity showed a significant positive correlation (p < 0.05). The highest TPC or antioxidant activity measured by method (N) indicates that method (N) has the least loss of TPC or antioxidant activity, and it is recommended for sample assays.
Collapse
Affiliation(s)
- Dan Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (D.W.); (Y.W.); Tel./Fax: +86-0571-8898-2156 (D.W.); +86-0571-8775-5294 (Y.W.)
| | - Qile Xia
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huilin Huang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanbin Wang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Academy of Forestry, Hangzhou 310023, China
- Correspondence: (D.W.); (Y.W.); Tel./Fax: +86-0571-8898-2156 (D.W.); +86-0571-8775-5294 (Y.W.)
| |
Collapse
|
12
|
Chaari M, Elhadef K, Akermi S, Hlima HB, Fourati M, Chakchouk Mtibaa A, Sarkar T, Shariati MA, Rebezov M, D’Amore T, Mellouli L, Smaoui S. Multiobjective response and chemometric approaches to enhance the phytochemicals and biological activities of beetroot leaves: an unexploited organic waste. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-15. [PMID: 36530596 PMCID: PMC9746593 DOI: 10.1007/s13399-022-03645-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on medicinal plants is developing each day due to inborn phytochemicals, which can encourage the progress of novel drugs. Most plant-based phytochemicals have valuable effects on well-being. Among them, beetroot leaves (BL) are known for their therapeutic properties. Here, three solvents, namely, acetonitrile, ethanol, and water, and their combinations were developed for BL extraction and simultaneous assessment of phytochemical compounds and antioxidant and antifoodborne pathogen bacteria activities. By using the augmented simplex-centroid mixture design, 40.40% acetonitrile diluted in water at 38.74% and ethanol at 20.86% favored the recovery of 49.28 mg GAE/mL (total phenolic content (TPC)) and 0.314 mg QE/mL (total flavonoid content (TFC)), respectively. Acetonitrile diluted in water at 50% guarantees the best antioxidant activity, whereas the optimal predicted mixture for the highest antibacterial activity matches 24.58, 50.17, and 25.25% of acetonitrile, ethanol, and water, respectively. These extraction conditions ensured inhibition of Staphylococcus aureus, Salmonella enterica, and Escherichia coli, respectively, at 0.402, 0.497, and 0.207 mg/mL. Under optimized conditions, at three concentrations of BL, minimal inhibitory concentration (MIC), 2 × MIC, and 4 × MIC, a linear model was employed to investigate the inhibition behavior against the three tested bacteria. The early logarithmic growth phase of these bacteria illustrated the bactericidal effect of optimized extracted BL with a logarithmic growth phase inferior to 6 h. Therefore, BL extract at 4 × MIC, which corresponds to 1.608, 1.988, and 0.828 mg/mL, was more efficient against S. aureus, S. enterica, and E. coli.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Tanmay Sarkar
- Department of Food Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102 West Bengal India
| | - Mohammed Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, 127550 Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, 127550 Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russia
| | - Teresa D’Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Puglia E Della, Foggia, Italy
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| |
Collapse
|
13
|
Bouslamti M, Metouekel A, Chelouati T, El Moussaoui A, Barnossi AE, Chebaibi M, Nafidi HA, Salamatullah AM, Alzahrani A, Aboul-Soud MAM, Bourhia M, Lyoussi B, Benjelloun AS. Solanum elaeagnifolium Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches. Molecules 2022; 27:8688. [PMID: 36557821 PMCID: PMC9783650 DOI: 10.3390/molecules27248688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains-most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between -5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.
Collapse
Affiliation(s)
- Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes (UEMF) Route de Meknes, Fez 30000, Morocco
| | - Tarik Chelouati
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez 30070, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Badiaa Lyoussi
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ahmed Samir Benjelloun
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
14
|
Mariyammal V, Sathiageetha V, Amalraj S, Gurav SS, Amiri-Ardekani E, Jeeva S, Ayyanar M. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Ouattar H, Zouirech O, Kara M, Assouguem A, Almutairi SM, Al-Hemaid FM, Rasheed RA, Ullah R, Abbasi AM, Aouane M, Mikou K. In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds. Molecules 2022; 27:5946. [PMID: 36144678 PMCID: PMC9505328 DOI: 10.3390/molecules27185946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Moroccan flora abounds and is an important reserve of medicinal plants. Nigella sativa and Lepidium sativum are plants that are widely used in traditional medicine for their multiple therapeutic properties. The current study aims to highlight the biological activities that can justify and valorize the use of these plants. Flavonoids, total phenols, condensed tannins, and sugars were determined. The biological activities tested were antioxidant by determining the IC50 (defined as the concentration of an antioxidant required to decrease the initial concentration by 50%; inversely related to the antioxidant capacity), hemagglutination, and hemolytic activities. Phytochemical quantification of the seed extracts indicated that the total phenol content was largely similar for both plants and in the order of 10 mg GAE (Gallic acid equivalent)/g. On the other hand, L. sativum seeds registered a higher content of flavonoids (3.09 ± 0.04 mg QE (quercetin equivalent)/g) as compared to Nigella saliva (0.258 ± 0.058). Concerning condensed tannins, N. saliva seeds present a higher amount with a value of 7.2 ± 0.025 mg/g as compared to L. sativum (1.4 ± 0.22 mg/g). Concerning the total sugar content, L. sativum shows a higher content (67.86 ± 0.87 mg/g) as compared to N. sativa (58.17 ± 0.42 mg/g); it is also richer in mucilage with a content of 240 mg as compared to 8.2 mg for N. saliva. Examination of the antioxidant activity using a DPPH (2.2-diphenyl 1-pycrilhydrazyl) test revealed that the EButOH (n-butanol extract) and EAE (ethyl acetate extract) extracts were the most active, with IC50 values of 48.7 and 50.65 μg/mL for the N. sativa extracts and 15.7 and 52.64 μg/mL for the L. sativum extracts, respectively. The results of the hemagglutination activity of the different extracts of the two plants prepared in the PBS (phosphate-buffered saline) medium showed significant agglutination for the L. sativum extract (1/50) compared to the N. sativa extract (1/20). An evaluation of the hemolytic effect of the crude extract of the studied seeds on erythrocytes isolated from rat blood incubated in PBS buffer compared to the total hemolysis induced by distilled water showed a hemolysis rate of 54% for Nigella sativa and 34% for L. sativum. In conclusion, the two plants studied in the current work exhibited high antioxidant potential, which could explain their beneficial properties.
Collapse
Affiliation(s)
- Hafssa Ouattar
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Otmane Zouirech
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 3000, Fez 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796 Atlas, Fez 30000, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M. Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology and Cell Biology Department, Faculty of Medicine, King Salman International University, El Tor 46612, Egypt
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan or
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy
| | - Mahjoub Aouane
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, University of Ibn Tofail, P.O. Box 133, Kenitra 14000, Morocco
| | - Karima Mikou
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 30000, Morocco
| |
Collapse
|