1
|
Dong B. Recent advances in the toxicological effects of difenoconazole: A focus on toxic mechanisms in fish and mammals. CHEMOSPHERE 2024; 368:143751. [PMID: 39547292 DOI: 10.1016/j.chemosphere.2024.143751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
The toxicological study of pesticides at sub-lethal and environment-relevant concentrations has become increasingly crucial for human and environmental health. Toxic mechanisms of agrochemicals contribute to discovering green pesticides, assessing the hazards of pesticides comprehensively, and supporting legitimate regulatory decisions. However, the toxicological effects of difenoconazole are not yet fully understood despite being frequently detected in fruits, vegetables, waters, and soils and posing hazards to humans and the environment. This lack of knowledge could lead to flawed risk assessment and administrative oversight. Thus, the review aimed to provide some investigation perspectives for clarifying the toxicological effects of difenoconazole by synthesizing the toxic data of difenoconazole on various organisms, such as bees, Daphnia magna, fish, earthworms, mammals, and plants and summarizing the toxicological mechanisms of difenoconazole, especially in fish and mammals from peer-reviewed publications. Evidence revealed that difenoconazole caused multiple toxicological effects, including developmental toxicity, reproductive toxicity, endocrine disruption effects, neurotoxicity, and transgenerational toxicity. The toxic mechanisms involved in metabolic disturbance, oxidative stress, inflammation, apoptosis, and autophagy by activating reactive oxygen species-mediated signaling pathways and mitochondrial apoptosis routes, disturbing amino acids, lipid, and nucleotide metabolism, and regulating gene transcription and expression in mammals and fish. Based on the review, further studies better focus on the toxic differences of difenoconazole stereoisomers, the toxicological effects of transformation products of difenoconazole, and the mechanism of action of difenoconazole on sex-specific endocrine disruption effects, intestinal damage, and gut dysbacteriosis for its hazard assessment and management synthetically.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, China.
| |
Collapse
|
2
|
Li W, Zhao D, Chen H, Guo L, Wei Y, Weng H, Cheng L, Zhu H, Guo Q, Shen S. Chiral Herbicide Fluorochloridone: Absolute Configuration, Stereoselective Bioactivity, Toxicity, and Degradation in the Potatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17880-17889. [PMID: 39083674 DOI: 10.1021/acs.jafc.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorochloridone (FLC) is a chiral herbicide that has four stereoisomers. This study systematically assessed the stereoselectivity of FLC to reveal the selective environmental behavior of its four isomers. Absolute configuration confirmation, evaluation of stereoselective bioactivity toward monocotyledonous and dicotyledonous weeds, toxicity to Danio rerio, and the stereoselective degradation in the potato system under field conditions of FLC were conducted. The four FLC stereoisomers were effectively separated on a superchiral S-AD column. The absolute configurations of the four stereoisomers of FLC were confirmed as (-)-(3S, 4S), (+)-(3S, 4R), (-)-(3R, 4S), and (+)-(3R, 4R)-FLC using single-crystal X-ray diffraction. The activities of the four stereoisomers were in the order of (-)-(3S, 4S)-FLC > (+)-(3R, 4R)-FLC > (+)-(3S, 4R)-FLC > (-)-(3R, 4S)-FLC, and the rate of selective degradation were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4R)-FLC > (+)-(3S, 4S)-FLC. The toxicity of the isomers were in the order of (-)-(3R, 4S)-FLC > (+)-(3R, 4R)-FLC > (-)-(3S, 4S)-FLC > (+)-(3S, 4R). Based on the results of bioactivity, toxicity, and degradation behavior assessments, the stereoisomer mixture containing (3R,4R)-FLC and (3S,4S)-FLC was concluded to be a better option than racemic FLC for increasing bioactivity and reducing usage.
Collapse
Affiliation(s)
- Wei Li
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Dong Zhao
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Liangzhi Guo
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Youhai Wei
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Hua Weng
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Liang Cheng
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Haixia Zhu
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Qingyun Guo
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| | - Shuo Shen
- Academy of Agriculture and Forestry, Qinghai University, 251 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Academy of Agriculture and Forestry, 253 Ningda Road, Chengbei District, Xining City 810016, Qinghai Province, China
| |
Collapse
|
3
|
Boros BV, Roman DL, Isvoran A. Evaluation of the Aquatic Toxicity of Several Triazole Fungicides. Metabolites 2024; 14:197. [PMID: 38668325 PMCID: PMC11051906 DOI: 10.3390/metabo14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fungicides play an important role in crop protection, but they have also been shown to adversely affect non-target organisms, including those living in the aquatic environment. The aim of the present study is to combine experimental and computational approaches to evaluate the effects of flutriafol, metconazole, myclobutanil, tebuconazole, tetraconazole and triticonazole on aquatic model organisms and to obtain information on the effects of these fungicides on Lemna minor, a freshwater plant, at the molecular level. The EC50 (the half-maximum effective concentration) values for the growth inhibition of Lemna minor in the presence of the investigated fungicides show that metconazole (EC50 = 0.132 mg/L) and tetraconazole (EC50 = 0.539 mg/L) are highly toxic, tebuconazole (EC50 = 1.552 mg/L), flutriafol (EC50 = 3.428 mg/L) and myclobutanil (EC50 = 9.134 mg/L) are moderately toxic, and triticonazole (EC50 = 11.631 mg/L) is slightly toxic to this plant. The results obtained with the computational tools TEST, ADMETLab2.0 and admetSAR2.0 also show that metconazole and tetraconazole are toxic to other aquatic organisms: Pimephales promelas, Daphnia magna and Tetrahymena pyriformis. A molecular docking study shows that triazole fungicides can affect photosynthesis in Lemna minor because they strongly bind to C43 (binding energies between -7.44 kcal/mol and -7.99 kcal/mol) and C47 proteins (binding energies between -7.44 kcal/mol and -8.28 kcal/mol) in the reaction center of photosystem II, inhibiting the binding of chlorophyll a to these enzymes. In addition, they can also inhibit glutathione S-transferase, an enzyme involved in the cellular detoxification of Lemna minor.
Collapse
Affiliation(s)
- Bianca-Vanesa Boros
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Diana-Larisa Roman
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|
4
|
Faris A, Ibrahim IM, Al kamaly O, Saleh A, Elhallaoui M. Computer-Aided Drug Design of Novel Derivatives of 2-Amino-7,9-dihydro-8H-purin-8-one as Potent Pan-Janus JAK3 Inhibitors. Molecules 2023; 28:5914. [PMID: 37570884 PMCID: PMC10473238 DOI: 10.3390/molecules28155914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.k.); (A.S.)
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| |
Collapse
|
5
|
Dascalu D, Isvoran A, Ianovici N. Predictions of the Biological Effects of Several Acyclic Monoterpenes as Chemical Constituents of Essential Oils Extracted from Plants. Molecules 2023; 28:4640. [PMID: 37375196 DOI: 10.3390/molecules28124640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acyclic terpenes are biologically active natural products having applicability in medicine, pharmacy, cosmetics and other practices. Consequently, humans are exposed to these chemicals, and it is necessary to assess their pharmacokinetics profiles and possible toxicity. The present study considers a computational approach to predict both the biological and toxicological effects of nine acyclic monoterpenes: beta-myrcene, beta-ocimene, citronellal, citrolellol, citronellyl acetate, geranial, geraniol, linalool and linalyl acetate. The outcomes of the study emphasize that the investigated compounds are usually safe for humans, they do not lead to hepatotoxicity, cardiotoxicity, mutagenicity, carcinogenicity and endocrine disruption, and usually do not have an inhibitory potential against the cytochromes involved in the metabolism of xenobiotics, excepting CYP2B6. The inhibition of CYP2B6 should be further analyzed as this enzyme is involved in both the metabolism of several common drugs and in the activation of some procarcinogens. Skin and eye irritation, toxicity through respiration and skin-sensitization potential are the possible harmful effects revealed by the investigated compounds. These outcomes underline the necessity of in vivo studies regarding the pharmacokinetics and toxicological properties of acyclic monoterpenes so as to better establish the clinical relevance of their use.
Collapse
Affiliation(s)
- Daniela Dascalu
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, 300086 Timisoara, Romania
| | - Nicoleta Ianovici
- Department of Biology Chemistry, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Environmental Biology and Biomonitoring Research Center, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| |
Collapse
|
6
|
Pan K, Liu Z, Li Z, Chen M, Quan Q, Yu X, Lei Y, Mo Q, Wang B, Guan T, Lei H. Identifying fungicide difenoconazole as illegal growth regulator in vegetable: Computer-aided hapten similarity to enhance immunoassay sensitivity. Anal Chim Acta 2023; 1258:341182. [PMID: 37087291 DOI: 10.1016/j.aca.2023.341182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Difenoconazole, a fungicide with broad-spectrum properties, has recently been found to have been used illegally used as a plant growth regulator in Brassica campestris, with the intent of inducing thick stems and dark green leaves. However, analysts have encountered challenges in implementing a rapid surveillance screening approach for this purpose. In this study, a novel hapten was designed to improve the analytical performance of difenoconazole immunoassay. Specifically, the triazole of the original hapten was replaced with a benzene ring, guided by molecular simulation. This led to the development of a very sensitive antibody and the subsequent development of a competitive indirect enzyme linked immunosorbent assay (ciELISA) for the detection of difenoconazole in vegetable samples. The assay exhibited a working range of 0.16 ng mL-1 to 9.64 ng mL-1, with a detection limit of 0.05 ng mL-1. Upon analysis of blind samples, a strong correlation was observed between the ciELISA and HPLC-MS/MS methods. As a result, the proposed technique may prove to be an excellent tool for the rapid detection of difenoconazole overuse and adulteration in vegetables.
Collapse
Affiliation(s)
- Kangliang Pan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaodong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Mindan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Quan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqin Yu
- Sichuan Institute of Food Inspection, Key Laboratory of Baijiu Supervising Technology for State Market Regulation, Sichuan, Chengdu, 610000, China
| | - Yi Lei
- Guangdong Institute of Food Inspection, Zengcha Road, Guangzhou, 510435, China
| | - Qiuhua Mo
- Bioeasy Technology, Inc., Shenzhen, 518102, China
| | - Bingzhi Wang
- Bioeasy Technology, Inc., Shenzhen, 518102, China
| | - Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Licheng Detection and Certification Group Co., Ltd, Guangdong, Zhongshan, 528403, China.
| |
Collapse
|
7
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
8
|
Assessment of the Effects of Triticonazole on Soil and Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196554. [PMID: 36235091 PMCID: PMC9572687 DOI: 10.3390/molecules27196554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.
Collapse
|
9
|
Boros BV, Dascalu D, Ostafe V, Isvoran A. Assessment of the Effects of Chitosan, Chitooligosaccharides and Their Derivatives on Lemna minor. Molecules 2022; 27:6123. [PMID: 36144862 PMCID: PMC9502776 DOI: 10.3390/molecules27186123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan, chitooligosaccharides and their derivatives’ production and use in many fields may result in their release to the environment, possibly affecting aquatic organisms. Both an experimental and a computational approach were considered for evaluating the effects of these compounds on Lemna minor. Based on the determined EC50 values against L. minor, only D-glucosamine hydrochloride (EC50 = 11.55 mg/L) was considered as “slightly toxic” for aquatic environments, while all the other investigated compounds, having EC50 > 100 mg/L, were considered as “practically non-toxic”. The results obtained in the experimental approach were in good agreement with the predictions obtained using the admetSAR2.0 computational tool, revealing that the investigated compounds were not considered toxic for crustacean, fish and Tetrahymena pyriformis aquatic microorganisms. The ADMETLab2.0 computational tool predicted the values of IGC50 for Tetrahymena pyriformis and the LC50 for fathead minnow and Daphnia magna, with the lowest values of these parameters being revealed by totally acetylated chitooligosaccharides in correlation with their lowest solubility. The effects of the chitooligosaccharides and chitosan on L. minor decreased with increased molecular weight, increased with the degree of deacetylation and were reliant on acetylation patterns. Furthermore, the solubility mainly influenced the effects on the aqueous environment, with a higher solubility conducted to lower toxicity.
Collapse
Affiliation(s)
- Bianca-Vanesa Boros
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Daniela Dascalu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Vasile Ostafe
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|