1
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
3
|
Nithya Shree J, Premika T, Sharlin S, Annie Aglin A. Diverse approaches to express recombinant spike protein: A comprehensive review. Protein Expr Purif 2024; 223:106556. [PMID: 39009199 DOI: 10.1016/j.pep.2024.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The spike protein of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for infecting host cells. It has two segments, S1 and S2. The S1 segment has a receptor-binding domain (RBD) that attaches to the host receptor angiotensin-converting enzyme 2 (ACE2). The S2 segment helps in the fusion of the viral cell membrane by creating a six-helical bundle through the two-heptad repeat domain. To develop effective vaccines and therapeutics against COVID-19, it is critical to express and purify the SARS-CoV-2 Spike protein. Extensive studies have been conducted on expression of a complete recombinant spike protein or its fragments. This review provides an in-depth analysis of the different expression systems employed for spike protein expression, along with their advantages and disadvantages.
Collapse
Affiliation(s)
- Jk Nithya Shree
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - T Premika
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - S Sharlin
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - A Annie Aglin
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India.
| |
Collapse
|
4
|
Leprovost S, Plasson C, Balieu J, Walet‐Balieu M, Lerouge P, Bardor M, Mathieu‐Rivet E. Fine-tuning the N-glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3018-3027. [PMID: 38968612 PMCID: PMC11500980 DOI: 10.1111/pbi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post-translational modifications like glycosylation of these Chlamydomonas-made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild-type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild-type strain demonstrated that the three N-glycosylation sites are 100% glycosylated with mature N-glycans containing four to five mannose residues and carrying core xylose, core fucose and O-methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N-linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N-glycosylation of the Chlamydomonas-made biologics.
Collapse
Affiliation(s)
- S. Leprovost
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
- Institute for Plant Biology and Biotechnology (IBBP), University of MünsterMünsterGermany
| | - C. Plasson
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - J. Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - M‐L. Walet‐Balieu
- Infrastructure de Recherche HeRacLeS, Plate‐forme protéomique PISSARO, Université de Rouen NormandieRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - E. Mathieu‐Rivet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| |
Collapse
|
5
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
6
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
7
|
Sobrino-Mengual G, Armario-Nájera V, Balieu J, Walet-Balieu ML, Saba-Mayoral A, Pelacho AM, Capell T, Christou P, Bardor M, Lerouge P. The SARS-CoV-2 Spike Protein Receptor-Binding Domain Expressed in Rice Callus Features a Homogeneous Mix of Complex-Type Glycans. Int J Mol Sci 2024; 25:4466. [PMID: 38674051 PMCID: PMC11050186 DOI: 10.3390/ijms25084466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.
Collapse
Affiliation(s)
- Guillermo Sobrino-Mengual
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
| | - Victoria Armario-Nájera
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
| | - Juliette Balieu
- GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Université de Rouen Normandie, F-76000 Rouen, France;
| | - Marie-Laure Walet-Balieu
- INSERM, CNRS, HeRacLeS US51 UAR2026, PISSARO, Université de Rouen Normandie, F-76000 Rouen, France; (M.-L.W.-B.); (M.B.)
| | - Andrea Saba-Mayoral
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
| | - Ana M. Pelacho
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
| | - Teresa Capell
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
| | - Paul Christou
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Agrotecnio CERCA Center, 25003 Lleida, Spain; (G.S.-M.); (V.A.-N.); (A.S.-M.); (A.M.P.); (T.C.); (P.C.)
- Catalan Institute for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Muriel Bardor
- INSERM, CNRS, HeRacLeS US51 UAR2026, PISSARO, Université de Rouen Normandie, F-76000 Rouen, France; (M.-L.W.-B.); (M.B.)
| | - Patrice Lerouge
- GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Université de Rouen Normandie, F-76000 Rouen, France;
| |
Collapse
|
8
|
Santoni M, Gutierrez-Valdes N, Pivotto D, Zanichelli E, Rosa A, Sobrino-Mengual G, Balieu J, Lerouge P, Bardor M, Cecchetto R, Compri M, Mazzariol A, Ritala A, Avesani L. Performance of plant-produced RBDs as SARS-CoV-2 diagnostic reagents: a tale of two plant platforms. FRONTIERS IN PLANT SCIENCE 2024; 14:1325162. [PMID: 38239207 PMCID: PMC10794598 DOI: 10.3389/fpls.2023.1325162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.
Collapse
Affiliation(s)
| | | | - Denise Pivotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Zanichelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Guillermo Sobrino-Mengual
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
- Applied Plant Biotechnology Group, Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Monica Compri
- Azienda Ospedaliera Universitaria, UOC Microbiologia e Virologia, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Ruocco V, Vavra U, König-Beihammer J, Bolaños−Martínez OC, Kallolimath S, Maresch D, Grünwald-Gruber C, Strasser R. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs. FRONTIERS IN PLANT SCIENCE 2023; 14:1275228. [PMID: 37868317 PMCID: PMC10588190 DOI: 10.3389/fpls.2023.1275228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Omayra C. Bolaños−Martínez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
11
|
Alpuche-Lazcano SP, Stuible M, Akache B, Tran A, Kelly J, Hrapovic S, Robotham A, Haqqani A, Star A, Renner TM, Blouin J, Maltais JS, Cass B, Cui K, Cho JY, Wang X, Zoubchenok D, Dudani R, Duque D, McCluskie MJ, Durocher Y. Preclinical evaluation of manufacturable SARS-CoV-2 spike virus-like particles produced in Chinese Hamster Ovary cells. COMMUNICATIONS MEDICINE 2023; 3:116. [PMID: 37612423 PMCID: PMC10447459 DOI: 10.1038/s43856-023-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Bassel Akache
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - John Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resources Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Arsalan Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Alexandra Star
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Dr, Ottawa, ON, K1A 0R6, Canada
| | - Tyler M Renner
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Julie Blouin
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jean-Sébastien Maltais
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Brian Cass
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Kai Cui
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Xinyu Wang
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB, T6G 2M9, Canada
| | - Daria Zoubchenok
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Renu Dudani
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
12
|
Margolin E, Schäfer G, Allen JD, Gers S, Woodward J, Sutherland AD, Blumenthal M, Meyers A, Shaw ML, Preiser W, Strasser R, Crispin M, Williamson AL, Rybicki EP, Chapman R. A plant-produced SARS-CoV-2 spike protein elicits heterologous immunity in hamsters. FRONTIERS IN PLANT SCIENCE 2023; 14:1146234. [PMID: 36959936 PMCID: PMC10028082 DOI: 10.3389/fpls.2023.1146234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen. The plant-produced protein was decorated with under-processed oligomannose N-glycans and exhibited a site occupancy that was comparable to the equivalent protein produced in mammalian cell culture. Complex-type glycans were almost entirely absent from the plant-derived material, which contrasted against the predominantly mature, complex glycans that were observed on the mammalian cell culture-derived protein. The plant-derived antigen elicited neutralizing antibodies against both the matched Wuhan and heterologous Delta SARS-CoV-2 variants in immunized hamsters, although titres were lower than those induced by the comparator mammalian antigen. Animals vaccinated with the plant-derived antigen exhibited reduced viral loads following challenge, as well as significant protection from SARS-CoV-2 disease as evidenced by reduced lung pathology, lower viral loads and protection from weight loss. Nonetheless, animals immunized with the mammalian cell-culture-derived protein were better protected in this challenge model suggesting that more faithfully reproducing the native glycoprotein structure and associated glycosylation of the antigen may be desirable.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Georgia Schäfer
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, Cape Town, South Africa
| | - Joel D Allen
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Jeremy Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Andrew D Sutherland
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Melissa Blumenthal
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Megan L Shaw
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, Cape Town, South Africa
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
14
|
Dehghani J, Movafeghi A, Mathieu-Rivet E, Mati-Baouche N, Calbo S, Lerouge P, Bardor M. Microalgae as an Efficient Vehicle for the Production and Targeted Delivery of Therapeutic Glycoproteins against SARS-CoV-2 Variants. Mar Drugs 2022; 20:md20110657. [PMID: 36354980 PMCID: PMC9698596 DOI: 10.3390/md20110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome–Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.
Collapse
Affiliation(s)
- Jaber Dehghani
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Elodie Mathieu-Rivet
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Narimane Mati-Baouche
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Sébastien Calbo
- Université de Rouen Normandie, Inserm U1234, F-76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-67-51
| |
Collapse
|