1
|
El Fadili M, Er-Rajy M, Ali Eltayb W, Kara M, Imtara H, Zarougui S, Al-Hoshani N, Hamadi A, Elhallaoui M. An in-silico investigation based on molecular simulations of novel and potential brain-penetrant GluN2B NMDA receptor antagonists as anti-stroke therapeutic agents. J Biomol Struct Dyn 2024; 42:6174-6188. [PMID: 37428078 DOI: 10.1080/07391102.2023.2232024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
GluN2B-induced activation of NMDA receptors plays a key function in central nervous system (CNS) disorders, including Parkinson, Alzheimer, and stroke, as it is strongly involved in excitotoxicity, which makes selective NMDA receptor antagonists one of the potential therapeutic agents for the treatment of neurodegenerative diseases, especially stroke. The present study aims to examine a structural family of thirty brain-penetrating GluN2B N-methyl-D-aspartate (NMDA) receptor antagonists, using virtual computer-assisted drug design (CADD) to discover highly candidate drugs for ischemic strokes. Initially, the physicochemical and ADMET pharmacokinetic properties confirmed that C13 and C22 compounds were predicted as non-toxic inhibitors of CYP2D6 and CYP3A4 cytochromes, with human intestinal absorption (HIA) exceeding 90%, and designed to be as efficient central nervous system (CNS) agents due to the highest probability to cross the blood-brain barrier (BBB). Compared to ifenprodil, a co-crystallized ligand complexed with the transport protein encoded as 3QEL.pdb, we have noticed that C13 and C22 chemical compounds were defined by good ADME-Toxicity profiles, meeting Lipinski, Veber, Egan, Ghose, and Muegge rules. The molecular docking results indicated that C22 and C13 ligands react specifically with the amino acid residues of the NMDA receptor subunit GluN1 and GluN2B. These intermolecular interactions produced between the candidate drugs and the targeted protein in the B chain remain stable over 200 nanoseconds of molecular dynamics simulation time. In conclusion, C22 and C13 ligands are highly recommended as anti-stroke therapeutic drugs due to their safety and molecular stability towards NMDA receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Sciences and Technology, Shendi University, Shendi, Sudan
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, Jenin, Palestine
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Alharbi AS, Altwaim SA, El-Daly MM, Hassan AM, Al-Zahrani IA, Bajrai LH, Alsaady IM, Dwivedi VD, Azhar EI. Marine fungal diversity unlocks potent antivirals against monkeypox through methyltransferase inhibition revealed by molecular dynamics and free energy landscape. BMC Chem 2024; 18:141. [PMID: 39080756 PMCID: PMC11290312 DOI: 10.1186/s13065-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The escalating threat posed by the Monkeypox virus (MPXV) to global health necessitates the urgent discovery of effective antiviral agents, as there are currently no specific drugs available for its treatment, and existing inhibitors are hindered by toxicity and poor pharmacokinetic profiles. This study aimed to identify potent MPXV inhibitors by screening a diverse library of small molecule compounds derived from marine fungi, focusing on the viral protein VP39, a key methyltransferase involved in viral replication. An extensive virtual screening process identified four promising compounds-CMNPD15724, CMNPD28811, CMNPD30883, and CMNPD18569-alongside a control molecule. Rigorous evaluations, including re-docking, molecular dynamics (MD) simulations, and hydrogen bond analysis, were conducted to assess their inhibitory potential against MPXV VP39. CMNPD15724 and CMNPD30883, in particular, demonstrated a superior binding affinity and stable interactions within the target protein's active site throughout the MD simulations, suggesting a capacity to overcome the limitations associated with sinefungin. The stability of these VP39-compound complexes, corroborated by MD simulations, provided crucial insights into the dynamic behavior of these interactions. Furthermore, Principal Component Analysis (PCA) based free energy landscape assessments offered a detailed understanding of the dynamic conformational changes and energetic profiles underlying these compounds' functional disruption of VP39. These findings establish CMNPD15724, CMNPD28811, CMNPD30883, and CMNPD18569 as promising MPXV inhibitors and highlight marine fungi as a valuable source of novel antiviral agents. These compounds represent potential candidates for further experimental validation, advancing the development of safer and more effective therapeutic options to combat this emerging viral infection.
Collapse
Affiliation(s)
- Azzah S Alharbi
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| | - Sarah A Altwaim
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Ibrahim A Al-Zahrani
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Leena H Bajrai
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Isra M Alsaady
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 605102, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, 201310, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Kumar V, Singh P, Parate S, Singh R, Ro HS, Song KS, Lee KW, Park YM. Computational insights into allosteric inhibition of focal adhesion kinase: A combined pharmacophore modeling and molecular dynamics approach. J Mol Graph Model 2024; 130:108789. [PMID: 38718434 DOI: 10.1016/j.jmgm.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Computational Biophysics Lab, Basque Center for Materials, Applications, and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa, 48940, Spain.
| | - Pooja Singh
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Shraddha Parate
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Hyeon-Su Ro
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan, 49104, Republic of Korea
| | - Keun Woo Lee
- Department of Bio & Medical Big Data (BK4 Program), Division of Life Science, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea; Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju, 52650, Republic of Korea.
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University 209, Neugdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
4
|
Latosińska M, Latosińska JN. Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure-Property Relationship, and Molecular Docking Study. Molecules 2024; 29:441. [PMID: 38257352 PMCID: PMC10818557 DOI: 10.3390/molecules29020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes while reducing side effects such as cardiotoxicity, hepatotoxicity, teratogenicity, and embryotoxicity. We proposed a set of FVP analogues together with their forms of triphosphate as new SARS-CoV-2 RdRp inhibitors. The main aim of our study was to investigate changes in the mechanism and binding capacity resulting from these modifications. Using three different approaches, QTAIM, QSPR, and MD, the differences in the reactivity, toxicity, binding efficiency, and ability to be incorporated by RdRp were assessed. Two new quantum chemical reactivity descriptors, the relative electro-donating and electro-accepting power, were defined and successfully applied. Moreover, a new quantitative method for comparing binding modes was developed based on mathematical metrics and an atypical radar plot. These methods provide deep insight into the set of desirable properties responsible for inhibiting RdRp, allowing ligands to be conveniently screened. The proposed modification of the FVP structure seems to improve its binding ability and enhance the productive mode of binding. In particular, two of the FVP analogues (the trifluoro- and cyano-) bind very strongly to the RNA template, RNA primer, cofactors, and RdRp, and thus may constitute a very good alternative to FVP.
Collapse
|
5
|
Faisal S, Badshah SL, Sharaf M, Abdalla M. Insight into the Hantaan virus RNA-dependent RNA polymerase inhibition using in-silico approaches. Mol Divers 2023; 27:2505-2522. [PMID: 36376718 PMCID: PMC9663193 DOI: 10.1007/s11030-022-10567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
The Hantaan virus (HTN) is a member of the hantaviridae family. It is a segmented type, negative-strand virus (sNSVs). It causes hemorrhagic fever with renal syndrome, which includes fever, vascular hemorrhage, and renal failure. This illness is one of the most serious hemorrhagic diseases in the world, and it is a major public health concern due to its high mortality rate. The Hantaan virus RNA-dependent RNA polymerase complex (RdRp) is involved in viral RNA transcription and replication for the survival and transmission of this virus. Therefore, it is a primary target for antiviral drug development. Interference with the endonucleolytic "cap-snatching" reaction by the HTN virus RdRp endonuclease domain is a particularly appealing approach for drug discovery against this virus. This RdRp endonuclease domain of the HTN virus has a metal-dependent catalytic activity. We targeted this metal-dependent enzymatic activity to identify inhibitors that can bind and disrupt this endonuclease enzyme activity using in-silico approaches i.e., molecular docking, molecular dynamics simulation, predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) and drug-likeness studies. The docking studies showed that peramivir, and ingavirin compounds can effectively bind with the manganese ions and engage with other active site residues of this protein. Molecular simulations also showed stable binding of these ligands with the active site of HTN RdRp. Simulation analysis showed that they were in constant contact with the active site manganese ions and amino acid residues of the HTN virus endonuclease domain. This study will help in better understanding the HTN and related viruses.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo, 11751, Egypt
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China.
| |
Collapse
|
6
|
Bajrai LH, Alandijany TA, Alsaady I, El-Daly MM, Tolah AM, Khateb AM, Dubey A, Dwivedi VD, Azhar EI. Assessing the inhibitory potential of anti-dengue compounds against Japanese encephalitis virus RNA dependent RNA polymerase: an in silico study. J Biomol Struct Dyn 2023; 42:11844-11860. [PMID: 37811742 DOI: 10.1080/07391102.2023.2265489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leena H Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabig, Saudi Arabia
| | - Aiah M Khateb
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Amit Dubey
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, India
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Kubra B, Badshah SL, Faisal S, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Inhibition of the predicted allosteric site of the SARS-CoV-2 main protease through flavonoids. J Biomol Struct Dyn 2023; 41:9103-9120. [PMID: 36404610 DOI: 10.1080/07391102.2022.2140201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022]
Abstract
Since its emergence in 2019, coronavirus infection (COVID-19) has become a global pandemic and killed several million people worldwide. Even though several types of vaccines are available against the COVID-19 virus, SARS-CoV-2, new strains are emerging that pose a constant danger to vaccine effectiveness. In this computational study, we identified and predicted potent allosteric inhibitors of the SARS-CoV-2 main protease (Mpro). Via molecular docking and simulations, more than 100 distinct flavonoids were docked with the allosteric site of Mpro. Docking experiments revealed four top hit compounds (Hesperidin, Schaftoside, Brickellin, and Marein) that bound strongly to the Mpro predicted allosteric site. Simulation analyses further revealed that these continually interacted with the enzyme's allosteric region throughout the simulation time. ADMET and Lipinski drug likenesses were calculated to indicate the therapeutic value of the top four hits: They were non-toxic and exhibited high human intestinal absorption concentrations. These novel allosteric site inhibitors provide a higher chance of drugging SARS-CoV2 Mpro due to the rapid mutation rate of the viral enzyme's active sites. Our findings provide a new avenue for developing novel allosteric inhibitors of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Tian H, Xiao S, Jiang X, Tao P. PASSer: fast and accurate prediction of protein allosteric sites. Nucleic Acids Res 2023; 51:W427-W431. [PMID: 37102691 PMCID: PMC10320119 DOI: 10.1093/nar/gkad303] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Allostery refers to the biological process by which an effector modulator binds to a protein at a site distant from the active site, known as allosteric site. Identifying allosteric sites is essential for discovering allosteric process and is considered a critical factor in allosteric drug development. To facilitate related research, we developed PASSer (Protein Allosteric Sites Server) at https://passer.smu.edu, a web application for fast and accurate allosteric site prediction and visualization. The website hosts three trained and published machine learning models: (i) an ensemble learning model with extreme gradient boosting and graph convolutional neural network, (ii) an automated machine learning model with AutoGluon and (iii) a learning-to-rank model with LambdaMART. PASSer accepts protein entries directly from the Protein Data Bank (PDB) or user-uploaded PDB files, and can conduct predictions within seconds. The results are presented in an interactive window that displays protein and pockets' structures, as well as a table that summarizes predictions of the top three pockets with the highest probabilities/scores. To date, PASSer has been visited over 49 000 times in over 70 countries and has executed over 6 200 jobs.
Collapse
Affiliation(s)
- Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75206, USA
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75206, USA
| | - Xi Jiang
- Department of Statistical Science, Southern Methodist University, Dallas, TX 75206, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75206, USA
| |
Collapse
|
9
|
Latosińska JN, Latosińska M, Seliger J, Žagar V, Apih T, Grieb P. Elucidating the Role of Noncovalent Interactions in Favipiravir, a Drug Active against Various Human RNA Viruses; a 1H- 14N NQDR/Periodic DFT/QTAIM/RDS/3D Hirshfeld Surfaces Combined Study. Molecules 2023; 28:molecules28083308. [PMID: 37110542 PMCID: PMC10147075 DOI: 10.3390/molecules28083308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Favipiravir (6-fluoro-3-hydroxypyrazine-2-carboxamide, FPV), an active pharmaceutical component of the drug discovered and registered in March 2014 in Japan under the name Avigan, with an indication for pandemic influenza, has been studied. The study of this compound was prompted by the idea that effective processes of recognition and binding of FPV to the nucleic acid are affected predominantly by the propensity to form intra- and intermolecular interactions. Three nuclear quadrupole resonance experimental techniques, namely 1H-14N cross-relaxation, multiple frequency sweeps, and two-frequency irradiation, followed by solid-state computational modelling (density functional theory supplemented by the quantum theory of atoms in molecules, 3D Hirshfeld Surfaces, and reduced density gradient) approaches were applied. The complete NQR spectrum consisting of nine lines indicating the presence of three chemically inequivalent nitrogen sites in the FPV molecule was detected, and the assignment of lines to particular sites was performed. The description of the nearest vicinity of all three nitrogen atoms was used to characterize the nature of the intermolecular interactions from the perspective of the local single atoms and to draw some conclusions on the nature of the interactions required for effective recognition and binding. The propensity to form the electrostatic N-H···O, N-H···N, and C-H···O intermolecular hydrogen bonds competitive with two intramolecular hydrogen bonds, strong O-H···O and very weak N-H···N, closing the 5-member ring and stiffening the structure, as well as π···π and F···F dispersive interactions, were analysed in detail. The hypothesis regarding the similarity of the interaction pattern in the solid and the RNA template was verified. It was discovered that the -NH2 group in the crystal participates in intermolecular hydrogen bonds N-H···N and N-H···O, in the precatalytic state only in N-H···O, while in the active state in N-H···N and N-H···O hydrogen bonds, which is of importance to link FVP to the RNA template. Our study elucidates the binding modes of FVP (in crystal, precatalytic, and active forms) in detail and should guide the design of more potent analogues targeting SARS-CoV-2. Strong direct binding of FVP-RTP to both the active site and cofactor discovered by us suggests a possible alternative, allosteric mechanism of FVP action, which may explain the scattering of the results of clinical trials or the synergistic effect observed in combined treatment against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Janez Seliger
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- "Jožef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tomaž Apih
- "Jožef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Science, Adolfa Pawińskiego 5, 02-106 Warszawa, Poland
| |
Collapse
|
10
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Faisal S, Badshah SL, Kubra B, Emwas AH, Jaremko M. Alkaloids as potential antivirals. A comprehensive review. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:4. [PMID: 36598588 PMCID: PMC9812014 DOI: 10.1007/s13659-022-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 05/26/2023]
Abstract
Alkaloids are a diverse group of natural phytochemicals. These phytochemicals in plants provide them protection against pests, and herbivorous organisms and also control their development. Numerous of these alkaloids have a variety of biological effects, and some have even been developed into medications with different medicinal properties. This review aims to provide a broad overview of the numerous naturally occurring alkaloids (isolated from both terrestrial and aquatic species) along with synthetically produced alkaloid compounds having prominent antiviral properties. Previous reviews on this subject have focused on the biological actions of both natural and synthetic alkaloids, but they have not gone into comprehensive detail about their antiviral properties. We reviewed here several antiviral alkaloids that have been described in the literature in different investigational environments i.e. (in-vivo, in-ovo, in-vitro, and in-silico), and found that these alkaloid compounds have significant antiviral properties against several infectious viruses. These alkaloids repressed and targeted various important stages of viral infection at non-toxic doses while some of the alkaloids reported here also exhibited comparable inhibitory activities to commercially used drugs. Overall, these anti-viral effects of alkaloids point to a high degree of specificity, implying that they could serve as effective and safe antiviral medicines if further pursued in medicinal and pharmacological investigations.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Bibi Kubra
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|