1
|
Liu Y, Meng X, Jin X, Wang L, Liu S, Chen S, Du K, Li J, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, quality control and other applications of Ligustici Rhizoma et Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117687. [PMID: 38163554 DOI: 10.1016/j.jep.2023.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Liu M, Liu G, Ma Z, Wen JL, Liu Y, Sun L, Ren X. A comprehensive quality evaluation method of different medicinal parts of Physalis Calyx seu Fructus by fingerprints, chemometrics, antioxidant activity, network pharmacology and molecular docking. Biomed Chromatogr 2023; 37:e5701. [PMID: 37406673 DOI: 10.1002/bmc.5701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Physalis Calyx seu Fructus (PCF) is a herb widely used in China for its function of clearing heat and detoxifying, benefitting the pharynx and reducing phlegm, both in health care and in tea drinking. However, the quality of its fruit and calyx is uneven and the storage period is short. Therefore, it is crucial to develop other parts of PCF with longer storage periods and obvious medicinal effects. Firstly, high-performance liquid chromatography was used to develop the fingerprint of different parts of PCF, and various chemometric analyses were conducted to screen out chemical markers. The calyxes of PCF were found to cluster together, distinct from the fruits, roots, stems and leaves. The active components of PCF were concentrated in the persistent calyxes, and flavonoids were mainly found in the persistent calyxes and leaves. Secondly, the extraction of persistent calyxes showed the strongest scavenging ability of DPPH and ABTS. Finally, the important chemical markers were verified by network pharmacological analysis and molecular docking. It provides a reference for the clinical application of PCF, and the obtained chemical markers offer a scientific basis for quality evaluation.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoqiang Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules 2023; 28:molecules28052216. [PMID: 36903461 PMCID: PMC10004716 DOI: 10.3390/molecules28052216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The rhizome of Atractylodes lancea (RAL) is a well-known Chinese herbal medicine (CHM) that has been applied in clinical settings for thousands of years. In the past two decades, cultivated RAL has gradually replaced wild RAL and become mainstream in clinical practice. The quality of CHM is significantly influenced by its geographical origin. To date, limited studies have compared the composition of cultivated RAL from different geographical origins. As essential oil is the primary active component of RAL, a strategy combining gas chromatography-mass spectrometry (GC-MS) and chemical pattern recognition was first applied to compare the essential oil of RAL (RALO) from different regions in China. Total ion chromatography (TIC) revealed that RALO from different origins had a similar composition; however, the relative content of the main compounds varied significantly. In addition, 26 samples obtained from various regions were divided into three categories by hierarchical cluster analysis (HCA) and principal component analysis (PCA). Combined with the geographical location and chemical composition analysis, the producing regions of RAL were classified into three areas. The main compounds of RALO vary depending on the production areas. Furthermore, a one-way analysis of variance (ANOVA) revealed that there were significant differences in six compounds, including modephene, caryophyllene, γ-elemene, atractylon, hinesol, and atractylodin, between the three areas. Hinesol, atractylon, and β-eudesmol were selected as the potential markers for distinguishing different areas by orthogonal partial least squares discriminant analysis (OPLS-DA). In conclusion, by combining GC-MS with chemical pattern recognition analysis, this research has identified the chemical variations across various producing areas and developed an effective method for geographic origin tracking of cultivated RAL based on essential oils.
Collapse
|