1
|
Zhong X, Lu Y, Lin H, Wu Z, Luo Y, Ye Z, Liao H, Li H. Electrospun Nanofiber Membrane with Sustained Release of Mogroside V Enhances Alveolar Bone Defect Repair in Diabetic Rats. ACS Biomater Sci Eng 2025; 11:1660-1674. [PMID: 39953973 DOI: 10.1021/acsbiomaterials.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The impaired healing of alveolar bone defects in diabetic patients has attracted considerable attention, with Mogroside V (MV) emerging as a promising candidate due to its demonstrated antioxidation, hypoglycemic, and anti-inflammatory properties in patients with diabetes mellitus. To address the limitations of oral MV administration, such as low bioavailability, rapid metabolism, and a short half-life, we developed a nanofiber membrane utilizing electrospinning technology for topical application by preparing membranes using MV, chitosan (CS), nanohydroxyapatite (HA), and poly(vinyl alcohol) (PVA) as raw materials to prolong the effect of MV and enhance bone regeneration in diabetic patients. The MV/HA/PVA/CS exhibited a good fiber diameter, prolonged drug release, and suitable degradation time, along with other favorable properties. In vitro experiments revealed its excellent biocompatibility, effectiveness in promoting osteogenesis, upregulation of osteogenic and anti-inflammatory genes, and concurrent downregulation of pro-inflammatory genes. In vivo evaluations further confirmed its ability to effectively modulate the diabetic microenvironment, reduce bone damage, and facilitate anti-inflammatory effects and alveolar bone regeneration in diabetics. These findings suggest that a nanofiber membrane with sustained release of MV may serve as a promising biomaterial, providing new insights into improving the healing of diabetic alveolar bone defects.
Collapse
Affiliation(s)
- Xiaoxia Zhong
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Yiyu Lu
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Haiyun Lin
- Department of Oral and Maxillofacial Surgery, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Ziwei Wu
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Yicai Luo
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Zhimao Ye
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Hongbing Liao
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| | - Hao Li
- Department of Prosthodontics, College & Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Restoration and Reconstruction, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Sun X, Ren H, Cui YC, Liu Q, Li J, Gao J. Surface-induced self-assembly of peptides turns superhydrophobic surface of electrospun fibrous into superhydrophilic one. Colloids Surf B Biointerfaces 2024; 245:114350. [PMID: 39509849 DOI: 10.1016/j.colsurfb.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Current surface modification strategies for electrospun materials always require covalent conjugation technology, which is relatively inefficient and might damage the bioactivity and structure of peptides and proteins. Here we introduce the use of surface-induced self-assembly technology to modify electrospun materials, which is a simple but efficient noncovalent-based process. Results show that the peptide NapFFGRGD forms burr-like structures on the surface of PCL fibers, reducing the water contact angle of the fibers. Adjusting the peptide sequence and salt concentration affects the self-assembly and surface properties of modified PCL fibers. Additionally, we demonstrate the potential application of this surface modification technique for enhancing cellular responses in tissue engineering applications. The research provides valuable insights into the surface modification of PCL fibers and offers a new method for improving the biological compatibility of materials in tissue engineering.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, PR China
| | - Han Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yue-Chan Cui
- Department of Ultrasound, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, PR China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jie Li
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Jiang J, Chen X, Wang H, Ou W, He J, Liu M, Lu Z, Hu J, Zheng G, Wu D. Response Surface Methodology to Explore the Influence Mechanism of Fiber Diameter in a New Multi-Needle Electrospinning Spinneret. Polymers (Basel) 2024; 16:2222. [PMID: 39125248 PMCID: PMC11314640 DOI: 10.3390/polym16152222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Multi-needle electrospinning is an efficient method for producing nanofiber membranes. However, fluctuations in the fluid flow rate during the process affect membrane quality and cause instability, an issue that remains unresolved. To address this, a multi-stage flow runner spinneret needs to be developed for large-scale nanofiber membrane production. This paper uses COMSOL finite element software to simulate polymer flow in the spinneret runner. From this, the velocity field distribution and velocity instability coefficient were obtained, providing theoretical guidance for optimal spinneret design. In addition, response surface analysis (RSM) was used to experimentally explore the process parameters, and then residual probability plots were used for reliability verification to evaluate the effect of each process parameter on fiber diameter. These process parameters can guide the controlled production of nanofibers during multi-needle electrospinning.
Collapse
Affiliation(s)
- Jianmin Jiang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojie Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weicheng Ou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Maolin Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zehui Lu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyi Hu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China; (J.J.); (H.W.); (W.O.); (J.H.); (M.L.); (Z.L.); (J.H.)
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (G.Z.); (D.W.)
| | - Dezhi Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; (G.Z.); (D.W.)
| |
Collapse
|
4
|
Cao Q, Zhu H, Xu J, Zhang M, Xiao T, Xu S, Du B. Research progress in the preparation of lignin-based carbon nanofibers for supercapacitors using electrospinning technology: A review. Int J Biol Macromol 2024; 273:133037. [PMID: 38897523 DOI: 10.1016/j.ijbiomac.2024.133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight. Although environmental factors are increasingly driving the application of circular economy concepts in materials science, lignin is an underutilized but promising environmentally benign electrode material for supercapacitors. Lignin-based carbon nanofibers are ideal for preparing high-performance supercapacitor electrode materials owing to their unique chemical stability, abundance, and environmental friendliness. Electrospinning is a well-known technique for producing large quantities of uniform lignin-based nanofibers, and is the simplest method for the large-scale production of lignin-based carbon nanofibers with specific diameters. This paper reviews the latest research progress in the preparation of lignin-based carbon nanofibers using the electrospinning technology, discusses the prospects of their application in supercapacitors, and analyzes the current challenges and future development directions. This is expected to have an enlightening effect on subsequent research.
Collapse
Affiliation(s)
- Qiping Cao
- Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Mingyu Zhang
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China
| | - Tianyuan Xiao
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Shuangping Xu
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
5
|
Liao M, Jian X, Zhao Y, Fu X, Wan M, Zheng W, Dong X, Zhou W, Zhao H. "Sandwich-like" structure electrostatic spun micro/nanofiber polylactic acid-polyvinyl alcohol-polylactic acid film dressing with metformin hydrochloride and puerarin for enhanced diabetic wound healing. Int J Biol Macromol 2023; 253:127223. [PMID: 37797847 DOI: 10.1016/j.ijbiomac.2023.127223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A diabetic wound is a typical chronic wound with a long repair process and poor healing effects. It is an effective way to promote diabetic wound healing to design electrospinning nanofiber films with drug-assisted therapy, good air permeability and, a multilayer functional structure. In this paper, a diabetic wound dressing with a "sandwich-like" structure was designed. Metformin hydrochloride, loaded in the hydrophilic PVA inner layer, could effectively promote diabetic wound healing. The drug release was slowed down by osmosis. The laminate film dressing had good mechanical properties, with tensile strength and elongation at break reaching 5.91 MPa and 90.47 %, respectively, which was close to human skin. The laminate film loaded with erythromycin and puerarin in the hydrophobic PLA outer layer had good antibacterial properties. In addition, due to the high specific surface of the electrostatic spun film, it exhibited high water vapor permeability. It facilitates the gas exchange between the wound and the outside world. The cell experiments proved that the laminate film dressing had good biocompatibility. There was no toxic side effect on cell proliferation. In the diabetic animal wound model, it was shown that the closure rate of diabetic wound repair by laminate film reached 91.11 % in the second week. Our results suggest that the "sandwich-like" nanofiber film dressing could effectively promote the healing process and meet the various requirements of diabetic wound dressing as a promising candidate for future clinical application of chronic wound dressings.
Collapse
Affiliation(s)
- Minjian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Xuewen Jian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanyan Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xuewei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiling Wan
- Guangdong Yunzhao Biological Medical Technology Co., Ltd., Guangzhou 510515, PR China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Hui Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Adamuz-Jiménez A, Manzano-Moreno FJ, Vallecillo C. Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers (Basel) 2023; 16:95. [PMID: 38201760 PMCID: PMC10781067 DOI: 10.3390/polym16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Both guided bone and guided tissue regeneration are techniques that require the use of barrier membranes. Contamination and infection of the surgical area is one of the most feared complications. Some current lines of research focus on functionalizing these membranes with different antimicrobial agents. The objective of this study was to carry out a review of the use and antibacterial properties of regeneration membranes doped with antimicrobials such as zinc, silver, chlorhexidine, and lauric acid. The protocol was based on PRISMA recommendations, addressing the PICO question: "Do membranes doped with non-antibiotic antimicrobials have antibacterial activity that can reduce or improve infection compared to membranes not impregnated with said antimicrobial?" Methodological quality was evaluated using the RoBDEMAT tool. A total of 329 articles were found, of which 25 met the eligibility criteria and were included in this review. Most studies agree that zinc inhibits bacterial growth as it decreases colony-forming units, depending on the concentration used and the bacterial species studied. Silver compounds also decreased the secretion of proinflammatory cytokines and presented less bacterial adhesion to the membrane. Some concentrations of chlorhexidine that possess antimicrobial activity have shown high toxicity. Finally, lauric acid shows inhibition of bacterial growth measured by the disk diffusion test, the inhibition zone being larger with higher concentrations. Antimicrobial agents such as zinc, silver, chlorhexidine, and lauric acid have effective antibacterial activity and can be used to dope regenerative membranes in order to reduce the risk of bacterial colonization.
Collapse
Affiliation(s)
- Ana Adamuz-Jiménez
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
| | - Francisco-Javier Manzano-Moreno
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
- Biomedical Group (BIO277), Department of Stomatology, University of Granada, 18071 Granada, Spain
- Instituto Investigación Biosanitaria, 18012 Granada, Spain
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
| |
Collapse
|
7
|
Manzano-Moreno FJ, de Luna-Bertos E, Toledano-Osorio M, Urbano-Arroyo P, Ruiz C, Toledano M, Osorio R. Biomimetic Collagen Membranes as Drug Carriers of Geranylgeraniol to Counteract the Effect of Zoledronate. Biomimetics (Basel) 2023; 9:4. [PMID: 38248578 PMCID: PMC10813297 DOI: 10.3390/biomimetics9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
To counteract the effect of zoledronate and decrease the risk of osteonecrosis of the jaw (BRONJ) development in patients undergoing guided bone regeneration surgery, the use of geranylgeraniol (GGOH) has been proposed. Collagen membranes may act as biomimetical drug carriers. The objective of this study was to determine the capacity of collagen-based membranes doped with GGOH to revert the negative impact of zoledronate on the growth and differentiation of human osteoblasts. MG-63 cells were cultured on collagen membranes. Two groups were established: (1) undoped membranes and (2) membranes doped with geranylgeraniol. Osteoblasts were cultured with or without zoledronate (50 μM). Cell proliferation was evaluated at 48 h using the MTT colorimetric method. Differentiation was tested by staining mineralization nodules with alizarin red and by gene expression analysis of bone morphogenetic proteins 2 and 7, alkaline phosphatase (ALP), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), type I collagen (Col-I), osterix (OSX), osteocalcin (OSC), osteoprotegerin (OPG), receptor for RANK (RANKL), runt-related transcription factor 2 (Runx-2), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF) with real-time PCR. One-way ANOVA or Kruskal-Wallis and post hoc Bonferroni tests were applied (p < 0.05). Scanning electron microscopy (SEM) observations were also performed. Treatment of osteoblasts with 50 μM zoledronate produced a significant decrease in cell proliferation, mineralization capacity, and gene expression of several differentiation markers if compared to the control (p < 0.001). When osteoblasts were treated with zoledronate and cultured on GGOH-doped membranes, these variables were, in general, similar to the control group (p > 0.05). GGOH applied on collagen membranes is able to reverse the negative impact of zoledronate on the proliferation, differentiation, and gene expression of different osteoblasts' markers.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
| | - Elvira de Luna-Bertos
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Paula Urbano-Arroyo
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS), 18071 Granada, Spain
| | - Manuel Toledano
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Raquel Osorio
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| |
Collapse
|
8
|
Yang D, Xu P, Tian C, Li S, Xing T, Li Z, Wang X, Dai P. Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules 2023; 28:6377. [PMID: 37687208 PMCID: PMC10489653 DOI: 10.3390/molecules28176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.
Collapse
Affiliation(s)
- Dehong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Xu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaofan Tian
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Sen Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tao Xing
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Zhi Li
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
| | - Pengcheng Dai
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
10
|
Functional Nanomaterials: From Structures to Biomedical Applications. Molecules 2022; 27:molecules27217492. [DOI: 10.3390/molecules27217492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
In recent decades, a number of functional nanomaterials have attracted a great amount of attention and exhibited excellent performance for biomedical and pharmaceutical applications [...]
Collapse
|