1
|
Durmaz B, Oktay Çelebi LM, Çekin A, Ahadova A, Günel NS, Yıldırım HK, Özgönül AM, Yıldırım Sözmen E. Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells. Biochem Res Int 2025; 2025:5538068. [PMID: 39850502 PMCID: PMC11756940 DOI: 10.1155/bri/5538068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025] Open
Abstract
Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control. Moreover, we aimed to investigate the impact of propolis on apoptosis by analyzing apoptosis markers such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), APAF-1, and caspases-3, -8, and -9. Propolis samples were extracted, and their phenolic compounds were quantified using LC-MS/MS. The RealTime Cell Analysis System-xCELLigence (RTCA-SP) device and software were employed to assess cell viability and cytotoxicity of the propolis samples. The IC50 values for propolis were determined (298 μg/mL for SW-620, 185.6 μg/mL for DU-145, 250.7 μg/mL for PC - 3, 292.9 μg/mL for MCF-7, and 311.2 μg/mL for WI-38). Subsequently, the effects of propolis on PPP2R1A expression and apoptosis markers (TRAIL, Apaf-1, and caspases-3, -8, and -9) were analyzed. When we compared the healthy cell lines to cancer cell lines, a statistically significant increase in caspase-3 (3.62-fold) and in TRAIL (4.38-fold) was observed in the SW-620 cell line after the application of propolis. In addition, in the PC-3 cell line, a 1.4-fold increase in caspase-8 was observed compared with the healthy cell line, which is also statistically significant. Our findings indicated that propolis increased the PPP2R1A levels and apoptosis markers in cancer cell lines. It has been suggested that high PPP2R1A levels induced by propolis treatment might activate the apoptosis pathway. In this study, the inducible effect of propolis on PPP2R1A levels, identified as a new target for cancer treatment, was demonstrated for the first time. The findings suggest that propolis holds promise as a potential cancer therapy by increasing PPP2R1A levels, a key molecule in cancer treatment.
Collapse
Affiliation(s)
- Burak Durmaz
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Cyprus
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
| | | | - Ayşe Çekin
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Ayshan Ahadova
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Nur Selvi Günel
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Türkiye
| | | | - Ali Mert Özgönül
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Eser Yıldırım Sözmen
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye
- Department of Medical Biochemistry, Faculty of Medicine, Tınaztepe University, İzmir, Türkiye
| |
Collapse
|
2
|
Heghedűş-Mîndru G, Glevitzky M, Heghedűş-Mîndru RC, Dumitrel GA, Popa M, Glevitzky I, Obiștioiu D, Cocan I, Vică ML. Inhibitory Effects and Composition Analysis of Romanian Propolis: Applications in Organic and Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3355. [PMID: 39683149 DOI: 10.3390/plants13233355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Propolis is a sustainable and environmentally friendly agrochemical of natural origin, a resinous mixture produced by honeybees. It is used as a natural remedy in multiple pathologies., but it is also a natural defense enhancer, a phytostimulator that helps to bind, bloom, and pollinate plants. Propolis is used in organic farming as a phytoprotector and phytostimulator. The present study investigates the main physical-chemical parameters of Romanian propolis, its antifungal activity against five fungal strains (Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Fusarium oxysporum, and Rhizopus stolonifer) and its phyto-inhibitory activity when it is applied on the layer and under the layer for different grain crops (wheat, maize, oats, and barley). Different doses were used-1, 5, and 10 g of propolis powder-and the growth of the plume was monitored for 13 days. The physical-chemical parameters investigated are volatile oils, wax, oxidation index, melting point, dry matter, ash, and resin, and maximum values were obtained for phenols (189.4 mgGAE/g), flavonoids (84.31 mgQE/g), and IC50 (0.086 µg/mL). Propolis demonstrates high antifungal activity against all fungal strains. The results showed that propolis has the best phyto-inhibition potential among the studied grain crops when it is applied on the layer, with the lowest plume growth for maize (14 mm), followed by oats, barley, and lastly wheat (24 mm). Propolis can find increasing application in sustainable and environmentally friendly agriculture and the obtaining of organic food.
Collapse
Affiliation(s)
- Gabriel Heghedűş-Mîndru
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | | | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Maria Popa
- Faculty of Exact Science and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Ioana Glevitzky
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Diana Obiștioiu
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Science "King Mihai I", 300645 Timișoara, Romania
| | - Mihaela Laura Vică
- Department of Cellular and Molecular Biology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Piontek K, Radonjic-Hoesli S, Grabbe J, Drewitz KP, Apfelbacher C, Wöhrl S, Simon D, Lang C, Schubert S. Comparison of patch testing Brazilian (Green) propolis and Chinese (poplar-type) propolis: Clinical epidemiological study using data from the Information Network of Departments of Dermatology (IVDK). Contact Dermatitis 2024. [PMID: 39367763 DOI: 10.1111/cod.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Propolis types differ regarding their chemical composition. OBJECTIVES To compare patch test results based on Brazilian (Green) propolis with data based on Chinese (poplar-type) propolis, and to evaluate the specifications of raw materials used for the PT preparations. METHODS In the Information Network of Departments of Dermatology (IVDK), 1290 consecutive patients were patch tested with Brazilian (Green) propolis (NH400, SmartPractice Europe). Patch test reactivity was compared with results obtained with Chinese (poplar-type) propolis (NA71, SmartPractice Europe) by calculating frequencies and corresponding 95% confidence intervals. Data on the specifications of raw materials used for NH400 and NA71 were obtained from the manufacturer. RESULTS Positive reactions to NH400 were found in 303 (23.5%) patients with unclear clinical relevance in most cases. Patients reacting to NH400 were less often sensitised to fragrances and colophony, but more often to nickel sulphate and cobalt chloride than patients reacting to NA71. The NH400 batch used contained high levels of aerobic bacteria, and was not purified by ethanolic extraction. CONCLUSIONS Pattern of concomitant reactivity along with raw material properties suggests that the high frequency of positive reactions to NH400 may primarily result from bacterial contamination or impurities in the PT preparation rather than from propolis constituents.
Collapse
Affiliation(s)
- K Piontek
- Information Network of Departments of Dermatology (IVDK), Institute at the University Medical Center Göttingen, Göttingen, Germany
- Institute for Social Medicine and Health Systems Research, Medical Faculty Magdeburg, Magdeburg, Germany
| | - S Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - J Grabbe
- Department of Dermatology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - K P Drewitz
- Information Network of Departments of Dermatology (IVDK), Institute at the University Medical Center Göttingen, Göttingen, Germany
- Institute for Social Medicine and Health Systems Research, Medical Faculty Magdeburg, Magdeburg, Germany
| | - C Apfelbacher
- Information Network of Departments of Dermatology (IVDK), Institute at the University Medical Center Göttingen, Göttingen, Germany
- Institute for Social Medicine and Health Systems Research, Medical Faculty Magdeburg, Magdeburg, Germany
| | - S Wöhrl
- Floridsdorf Allergy Center, Vienna, Austria
| | - D Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C Lang
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - S Schubert
- Information Network of Departments of Dermatology (IVDK), Institute at the University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MBPP, Fathi F, Souto EB. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol 2024; 55:2753-2766. [PMID: 38888693 PMCID: PMC11405619 DOI: 10.1007/s42770-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.
Collapse
Affiliation(s)
- Beatriz N Guedes
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, Guarda, 6300-035, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Napoli, 80131, Italy
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.
| |
Collapse
|
5
|
Pratami DK, Sahlan M, Bayu A, Putra MY, Ibrahim B, Siswadi, Qodriah R, Mun'im A. Characteristics of Indonesian Stingless Bee Propolis and Study of Metabolomic Properties Based on Region and Species. Molecules 2024; 29:4037. [PMID: 39274885 PMCID: PMC11396675 DOI: 10.3390/molecules29174037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
The chemical compounds found in propolis vary according to plant sources, species, and geographical regions. To date, Indonesian propolis has not yet become standardized in terms of its chemical constituents. Thus, this study aimed to identify the presence of marker compounds and determine whether different classes of Indonesian propolis exist. In this study, yields, total polyphenol content (TPC), total flavonoid content (TFC), and antioxidants were measured. Identification of chemical compounds was carried out with Fourier-transform infrared (FTIR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Metaboanalyst 6.0 was employed in conducting principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) using the results of the FTIR and LC-MS/MS. The propolis with the highest TFC, TPC, and antioxidant activity was Geniotrigona thoracica from North Sumatra. The results of propolis compound mapping based on region with discriminant analysis revealed that types of propolis from Java have similar characteristics. Then, based on species, the types of propolis from Tetragonula laeviceps and Heterotrigona itama have special characteristics; the samples from these species can be grouped according to similar characteristics. In conclusion, 10 potential marker compounds were identified in Indonesian propolis, enabling regional and species-specific varieties of Indonesian propolis to be classified based on chemical composition mapping.
Collapse
Affiliation(s)
- Diah Kartika Pratami
- Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok 16424, West Java, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
- Center for Study of Natural Product for Degenerative Disease, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, DKI Jakarta, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16425, West Java, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16425, West Java, Indonesia
| | - Asep Bayu
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia
| | - Masteria Yunovilsa Putra
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia
| | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siswadi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor 16911, West Java, Indonesia
| | - Rahmatul Qodriah
- Center for Study of Natural Product for Degenerative Disease, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, DKI Jakarta, Indonesia
| | - Abdul Mun'im
- Faculty of Pharmacy, Universitas Indonesia, Cluster of Health Sciences Building, Depok 16424, West Java, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
| |
Collapse
|
6
|
Etebarian A, Alhouei B, Mohammadi‐Nasrabadi F, Esfarjani F. Propolis as a functional food and promising agent for oral health and microbiota balance: A review study. Food Sci Nutr 2024; 12:5329-5340. [PMID: 39139934 PMCID: PMC11317756 DOI: 10.1002/fsn3.4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024] Open
Abstract
Bee Propolis has been used for its therapeutic properties, including anti-inflammatory, antibacterial, antifungal, and immune-stimulating properties, for centuries as a functional food. This study reviewed the effectiveness of propolis as a functional food on oral-related diseases as a rich bioflavonoid produced by honey bees. A literature search was conducted to identify studies published that investigated the effects of propolis on oral health and its ability to treat related diseases. The search was performed in electronic databases using relevant keywords. Initially, 3429 studies were identified through database searching, and based on the inclusion and exclusion criteria, 22 articles were eligible to be included. Reviewing the articles, propolis was recognized as a functional food and promising agent to balance oral microbiota and prevent oral diseases due to its effectiveness on related bacteria, its anti-inflammatory properties, and its activity against Porphyromonas gingivalis and Actinomyces Oris allowed it to be an effective substance to prevent periodontal diseases. Based on our findings, Propolis is a desirable preventive option for various oral health conditions, including dental caries and periodontal diseases. Therefore, it is recommended to be consumed as a functional food in our daily diet, which can reduce the risk of oral disease and improve oral health.
Collapse
Affiliation(s)
- Arghavan Etebarian
- Department of Oral and Maxillofacial Pathology, School of DentistryAlborz University of Medical SciencesKarajIran
| | - Barbod Alhouei
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute (NNFTRI), Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Mohammadi‐Nasrabadi
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute (NNFTRI), Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Esfarjani
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute (NNFTRI), Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Mariana Kustiawan P, Siregar KAAK, Syaifie PH, Zein Muttaqin F, Ibadillah D, Miftah Jauhar M, Djamas N, Mardliyati E, Taufiqu Rochman N. Uncovering the anti-breast cancer activity potential of east Kalimantan propolis by In vitro and bioinformatics analysis. Heliyon 2024; 10:e33636. [PMID: 39071605 PMCID: PMC11283153 DOI: 10.1016/j.heliyon.2024.e33636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Numerous side effects of breast cancer drugs have prompted researchers to explore more into new therapeutic approaches derived from natural substances. In this context, our study focused on uncovering the potential of East Kalimantan propolis from Trigona apicalis for breast cancer treatment including the underlying mechanisms through bioinformatics approached. We conducted integrated in vitro and bioinformatics analysis of network pharmacology, molecular docking, molecular dynamics and MM-GBSA analysis. Initially, in vitro cytotoxic assay demonstrated the anti-breast cancer activity potential of ethanol extract of East Kalimantan propolis, particularly its ethyl acetate fraction, which exhibited similar activity to doxorubicin, as indicated by their IC50 value. This study revealed eight propolis compounds, consisting of flavonoids and phenolic acids, in East Kalimantan propolis. By integrating microarray datasets (GSE29431, GSE36295, and GSE42568) analysis with potential targets derived from propolis compounds, 39 shared target genes were identified. Subsequently, GO and KEGG pathway, protein-protein interaction (PPI) network, core hub genes and gene expression analysis revealed three major targets, namely, PTGS2, CXCL2, and MMP9. Among them, only MMP9 was highly expressed in breast cancer than normal. Moreover, molecular docking revealed the six of propolis compounds which exhibited pronounced binding affinity towards MMP-9, better than marimastat as control drug. Dynamic simulation confirmed the stability of chrysin and quercetin as best compounds. Additionally, MM-GBSA analysis revealed a relative binding energy for chrysin (-25.6403 kcal/mol) that was comparable to marimastat (-27.3827 kcal/mol). In conclusion, this study reveals how East Kalimantan Propolis affect breast cancer and emphasizes MMP9 as a key target for future therapeutics.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Fauzan Zein Muttaqin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Nailulkamal Djamas
- Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
8
|
Jenny JC, Kuś PM, Szweda P. Investigation of antifungal and antibacterial potential of green extracts of propolis. Sci Rep 2024; 14:13613. [PMID: 38871855 DOI: 10.1038/s41598-024-64111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Propolis extracts have been used in traditional medicines since ages due to its advantageous complex chemical composition. However, the antibacterial and antifungal activity of poplar propolis extracts prepared in Natural Deep Eutectic Solvent (NADES) are seldom studied. This study investigates suitable alternate for ethanol as a solvent for extraction for Polish poplar propolis. It also attempts to identify suitable extraction condition for the efficient transfer of compounds from propolis to the solvents. The extraction efficiency of NADES extracts was assessed in terms of total phenolic content, antioxidant activity and antimicrobial activity. The chemical composition of the extracts was analysed using UHPLC-DAD-QqTOF-MS. Four extracts, prepared in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3), Choline Chloride:Propylene Glycol (1:4) and Choline Chloride:Glycerol (1:2), demonstrated activity and properties similar to ethanolic extract and extraction at 50 °C was found the most suitable for propolis. HPLC analysis confirmed that the chemical cocktail extracted by these solvents from propolis were identical with minor variations in their concentration as compared to its ethanolic extract. Thus, extracts of propolis at 50 °C in Propylene Glycol, Choline Chloride:Propylene Glycol (1:3) and Choline Chloride:Propylene Glycol (1:4) can be alternates for ethanolic extracts.
Collapse
Affiliation(s)
- Jeslin Cheruvathoor Jenny
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Ul. Borowska 211a, 50-556, Wrocław, Poland
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
9
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
10
|
Yaylaci Karahalil F, Bakirhan F, Kara Y. In Vitro Determination of Nitric Oxide Synthase Inhibition, Antioxidant Capacity and Phenolic Content of Various Natural Products (Bee and Herbal Products). Chem Biodivers 2024; 21:e202301330. [PMID: 38220973 DOI: 10.1002/cbdv.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
It is obvious that the oxidation process is an undeniable fact and when it comes to aging, one of the first solutions that come to mind is natural products. When it comes to natural products, both plants and bee products play an important, almost combative role against oxidation. For this purpose, natural products of both plant and animal origin were considered together in our study: Linden, green tea, aronia, wild grapes, myrtle, blueberries and basil, honey, pollen and propolis. Total phenolic content values of the extracts ranged between 49.28 and 3859.06 mg gallic acid equivalent/100 g, and propolis, green tea, chestnut flower and aronia samples were found to have the highest values. When looking at the NOS inhibition potential, it was determined that propolis, pollen and aronia samples had the highest percentage inhibition values of 98.11, 92.29, 83.44, respectively. Antioxidant activities of methanolic extracts were investigated using iron(III) reducing/antioxidant capacity (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test and NOS inhibition tests. The phenolic composition of methanolic extracts was tested using the RP-HPLC-UV (high-performance liquid chromatographic method with ultraviolet) method with 19 phenolic standards.
Collapse
Affiliation(s)
- Fatma Yaylaci Karahalil
- Karadeniz Technical University, Maçka Vocational School, Department of Chemistry and Chemical Processing Technologies, Biochemistry Program, 61750, Maçka, Trabzon, Turkey
| | - Fatma Bakirhan
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey
| | - Yakup Kara
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, 61080, Trabzon, Turkey
| |
Collapse
|
11
|
Chavda VP, Vuppu S, Balar PC, Mishra T, Bezbaruah R, Teli D, Sharma N, Alom S. Propolis in the management of cardiovascular disease. Int J Biol Macromol 2024; 266:131219. [PMID: 38556227 DOI: 10.1016/j.ijbiomac.2024.131219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Propolis is a resinous compound that is obtained from honey bees. It consists of numerous chemical constituents that impart different therapeutic action. The heart is the core of the body and cardiovascular disease (CVD) is a burden for the human being. This article emphasizes how propolis is fruitful in the management of various CVDs. SCOPE AND APPROACH This review focuses on how various constituents of the propolis (such as terpenes, flavonoids, phenolics, etc.) impart cardio protective actions. KEY FINDING AND CONCLUSION With the support of various clinical trials and research outcomes, it was concluded that propolis owns niche cardio protective properties that can be a boon for various cardiac problems (both in preventive and therapeutic action) such as atherosclerosis, excessive angiogenesis, hypertension, and many more.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Pankti C Balar
- Pharmacy Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Rajashri Bezbaruah
- Institute of Pharmacy, Assam medical College and hospital, Dibrugarh, Assam, India
| | - Divya Teli
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shahnaz Alom
- Girijananda Chowdhury Institute of Pharmaceutical Science, Girijananda Chowdhury University, Tezpur, Sonitpur, Assam, India
| |
Collapse
|
12
|
Konsila K, Assavalapsakul W, Phuwapraisirisan P, Chanchao C. Anti- Malassezia globosa (MYA-4889, ATCC) activity of Thai propolis from the stingless bee Geniotrigona thoracica. Heliyon 2024; 10:e29421. [PMID: 38660263 PMCID: PMC11041017 DOI: 10.1016/j.heliyon.2024.e29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Malassezia globosa, a lipophilic pathogen, is known to be involved in various chronic skin diseases. Unfortunately, the available treatments have unwanted side effects and microbial drug resistance is evolving. As the antimicrobial activity of propolis is outstanding, this study aimed to examine the potential of propolis from the stingless bee Geniotrigona thoracica against the yeast. Anti-M. globosa growth activity was ascertained in agar well diffusion and broth microdilution assays and the inhibitory concentration value at 50 % (IC50) was determined. Since the yeast cannot synthesize its own fatty acids, extracellular lipase is important for its survival. Here, anti-M. globosa extracellular lipase activity was additionally investigated by colorimetric and agar-based methods. Compared to the crude hexane and crude dichloromethane extracts, the crude methanol partitioned extract (CMPE) exhibited the best anti-M. globosa growth activity with an IC50 of 1.22 mg/mL. After CMPE was further enriched by silica gel column chromatography, fraction CMPE1 (IC50 of 0.98 mM or 184.93 μg/mL) presented the highest activity and was later identified as methyl gallate (MG) by nuclear magnetic resonance analysis. Subsequently, MG was successfully synthesized and shown to have a similar activity, and a minimal fungicidal concentration of 43.44 mM or 8.00 mg/mL. However, lipase assay analysis suggested that extracellular lipase might not be the main target mechanism of MG. This is the first report of MG as a new anti-Malassezia compound. It could be a good candidate for further developing alternative therapeutic agents.
Collapse
Affiliation(s)
- Kawisara Konsila
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Preecha Phuwapraisirisan
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Son NT, Gianibbi B, Panti A, Spiga O, Bastos JK, Fusi F. 3,3'-O-dimethylquercetin: A bi-functional vasodilator isolated from green propolis of the Caatinga Mimosa tenuiflora. Eur J Pharmacol 2024; 967:176400. [PMID: 38331336 DOI: 10.1016/j.ejphar.2024.176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.
Collapse
Affiliation(s)
- Ninh The Son
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil; Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam; Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Beatrice Gianibbi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Alice Panti
- Dipartimento di Scienze della Vita, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, S/N, 14040-903, Ribeirão Preto-SP, Brazil.
| | - Fabio Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|
14
|
Necip A, Demirtas I, Tayhan SE, Işık M, Bilgin S, Turan İF, İpek Y, Beydemir Ş. Isolation of phenolic compounds from eco-friendly white bee propolis: Antioxidant, wound-healing, and anti-Alzheimer effects. Food Sci Nutr 2024; 12:1928-1939. [PMID: 38455224 PMCID: PMC10916560 DOI: 10.1002/fsn3.3888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024] Open
Abstract
This study presents the first findings regarding extraction, isolation, enzyme inhibition, and antioxidant activity. The oral mucosal wound-healing process was investigated using propolis water extract (PWE) incubation with gingival fibroblast cells and concluded that propolis was effective on the oral mucosal wound-healing pattern compared to untreated controls. Additionally, phenolic compounds (fraxetin, apigenin, galangin, pinobanksin, chrysin, etc.) were isolated from propolis, and their chemical structures were elucidated using comprehensive spectroscopic methods. The antioxidant and anti-Alzheimer potential activities of PWE and some isolated compounds were screened and revealing their inhibitory effects on acetylcholinesterase (AChE) with IC50 values ranging from 0.45 ± 0.01 to 1.15 ± 0.03 mM, as well as remarkable free-radical scavenging and metal reduction capacities. The results suggest that these compounds and PWE can be used as therapeutic agents due to their antioxidant properties and inhibitory potential on AChE. It can also be used for therapeutic purposes since its wound-healing effect is promising.
Collapse
Affiliation(s)
- Adem Necip
- Department of Pharmacy Services, Vocational School of Health ServicesHarran UniversityŞanlıurfaTürkiye
| | - Ibrahim Demirtas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyOndokuz Mayıs UniversitySamsunTürkiye
| | - Seçil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyTokat Gaziosmanpasa UniversityTokatTürkiye
| | - Mesut Işık
- Department of Bioengineering, Faculty of EngineeringBilecik Seyh Edebali UniversityBilecikTürkiye
| | - Sema Bilgin
- Department of Medical Laboratory Techniques, Vocational School of Health ServicesGaziosmanpasa UniversityTokatTürkiye
| | - İsmail Furkan Turan
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyTokat Gaziosmanpasa UniversityTokatTürkiye
| | - Yaşar İpek
- Plant Research Laboratory‐B, Department of Chemistry, Faculty of ScienceCankiri Karatekin UniversityCankiriTürkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehirTürkiye
| |
Collapse
|
15
|
Durazzo A, Lucarini M, Dwyer JT, Sorkin BC, Heinrich M, Pehrsson P. Opportunities and challenges in using NIH's Dietary Supplement Label Database for research on non-nutrient ingredients: Use case for ingredients in honeybee products. PHARMANUTRITION 2024; 27:100377. [PMID: 39007096 PMCID: PMC11243758 DOI: 10.1016/j.phanu.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Non-nutrient bioactive ingredients of foods such as bee products are often of interest in preclinical and clinical research to explore their possible beneficial effects. The National Institute of Health's Dietary Supplement Label Database (DSLD) contains over 165,000 labels of dietary supplements marketed in the United States of America (US), including declarations on labels for many of these ingredients, including those in honeybee products which have been used in foods and traditional medicines for centuries worldwide and are now also appearing in dietary supplements. Methods This article presents a use case for honeybee products that describes and tests the utility of the DSLD and other databases available in the US as research tools for identifying and quantifying the prevalence of such ingredients.. It focuses on the limitations to the information on product composition in these databases and describes how to code the ingredients using the LanguaL™ or FoodEx2 description and classification systems and the strengths and limitations of information on honeybee product ingredients, including propolis, bee pollen, royal jelly, beeswax, and bee venom. Results and Conclusions Codes for the ingredients are provided for identifying their presence in LanguaL™ or FoodEx2 ontologies used in Europe and elsewhere. The prevalence of dietary supplement products containing these ingredients in DSLD and on the US market is low compared to some other products and ingredients. Unfortunately label declarations in DSLD do not provide quantitative information and so the data can be used only to screen for their presence, but cannot be used for quantitative exposure estimates by researchers and regulators .
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178, Rome, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178, Rome, Italy
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, 6705 Rockledge Drive (Rockledge I) Room 730, Bethesda, MD 20817, MSC 7991, USA
| | - Barbara C. Sorkin
- Office of Dietary Supplements, National Institutes of Health, 6705 Rockledge Drive (Rockledge I) Room 730, Bethesda, MD 20817, MSC 7991, USA
| | - Michael Heinrich
- UCL School of Pharmacy, Pharmacognosy and Phytotherapy, London, United Kingdom
- Department of Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pamela Pehrsson
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| |
Collapse
|
16
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 PMCID: PMC10930781 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
17
|
Kurek-Górecka A, Kłósek M, Pietsz G, Balwierz R, Olczyk P, Czuba ZP. Ethanolic Extract of Propolis and CAPE as Cardioprotective Agents against LPS and IFN-α Stressed Cardiovascular Injury. Nutrients 2024; 16:627. [PMID: 38474755 DOI: 10.3390/nu16050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
18
|
Bottoni M, Martinelli G, Maranta N, Sabato E, Milani F, Colombo L, Colombo PS, Piazza S, Sangiovanni E, Giuliani C, Bruschi P, Vistoli G, Dell’Agli M, Fico G. From Primary Data to Ethnopharmacological Investigations on Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson as a Remedy against Gastric Ailments in Valmalenco (Italy). PLANTS (BASEL, SWITZERLAND) 2024; 13:539. [PMID: 38498568 PMCID: PMC10891827 DOI: 10.3390/plants13040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
(1) Background: Within the framework of the European Interreg Italy-Switzerland B-ICE & Heritage project (2018-2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (Asteraceae) for dyspepsia disorders, specifically its anti-inflammatory potential at a gastrointestinal level. (2) Methods: Semi-structured interviews were performed. The bitter taste was investigated through molecular docking software (PLANTS, GOLD), while the anti-inflammatory activity of the hydroethanolic extract, infusion, and decoction was evaluated based on the release of IL-8 and IL-6 after treatment with TNFα or Helicobacter pylori. The minimum inhibitory concentration and bacterial adhesion on the gastric epithelium were evaluated. (3) Results: In total, 401 respondents were interviewed. Molecular docking highlighted di-caffeoylquinic acids as the main compounds responsible for the interaction with bitter taste receptors. The moderate inhibition of IL-6 and IL-8 release was recorded, while, in the co-culture with H. pylori, stronger anti-inflammatory potential was expressed (29-45 μg/mL). The concentration-dependent inhibition of H. pylori growth was recorded (MIC = 100 μg/mL), with a significant anti-adhesive effect. (4) Conclusions: Confirming the folk tradition, the study emphasizes the species' potentiality for dyspepsia disorders. Future studies are needed to identify the components mostly responsible for the biological effects.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (G.M.); (N.M.); (S.P.); (E.S.); (M.D.)
| | - Nicole Maranta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (G.M.); (N.M.); (S.P.); (E.S.); (M.D.)
| | - Emanuela Sabato
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (G.M.); (N.M.); (S.P.); (E.S.); (M.D.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (G.M.); (N.M.); (S.P.); (E.S.); (M.D.)
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (G.M.); (N.M.); (S.P.); (E.S.); (M.D.)
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (E.S.); (L.C.); (P.S.C.); (C.G.); (G.V.); (G.F.)
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, BS, Italy
| |
Collapse
|
19
|
Manginstar CO, Tallei TE, Niode NJ, Salaki CL, Hessel SS. Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytother Res 2024; 38:856-879. [PMID: 38084816 DOI: 10.1002/ptr.8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 02/15/2024]
Abstract
Burns can cause inflammation and delayed healing, necessitating alternative therapies due to the limitations of conventional treatments. Propolis, a natural bee-produced substance, has shown promise in facilitating burn healing. This literature review provides a comprehensive overview of propolis' mechanisms of action, wound-healing properties, and its application in treating skin burns. Propolis contains bioactive compounds with antimicrobial, antioxidant, and anti-inflammatory properties, making it a promising candidate for managing skin burn injuries. It helps prevent infections, neutralize harmful free radicals, and promote a well-balanced inflammatory response. Moreover, propolis aids in wound closure, tissue regeneration, collagen synthesis, cellular proliferation, and angiogenesis, contributing to tissue regeneration and remodeling. The article discusses various propolis extracts, extraction methods, chemical composition, and optimized formulations like ointments and creams for burn wound treatment. Considerations regarding dosage and safety are addressed. Further research is needed to fully understand propolis' mechanisms, determine optimal formulations, and establish suitable clinical dosages. Nevertheless, propolis' natural origin and demonstrated benefits make it a compelling avenue for burn care exploration, potentially complementing existing therapies and improving burn management outcomes.
Collapse
Grants
- 158/E5/PG.02.00.PL/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
- 1803/UN12.13/LT/2023 Directorate of Research, Technology, and Community Engagement at the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia
Collapse
Affiliation(s)
- Christian Oktavianus Manginstar
- Entomology Study Program, Postgraduate Program, Sam Ratulangi University, Manado, Indonesia
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado, Indonesia
| | - Christina Leta Salaki
- Plant Protection Study Program, Faculty of Agriculture, Sam Ratulangi University, Manado, Indonesia
| | - Sofia Safitri Hessel
- Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, Indonesia
| |
Collapse
|
20
|
Kustiawan PM, Syaifie PH, Al Khairy Siregar KA, Ibadillah D, Mardliyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. ADMET AND DMPK 2024; 12:1-26. [PMID: 38560717 PMCID: PMC10974817 DOI: 10.5599/admet.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Scientific research is crucial to develop therapies for various disease severity levels, as modern drugs cause side effects and are difficult to predict. Researchers are exploring herbal alternatives with fewer side effects, particularly propolis, which has been validated through in vitro, in vivo, and clinical studies. This will focus on scientific evidence and its supporting technology for developing new bioactive compounds for chronic diseases. Nanotechnology can improve the delivery and absorption of herbal medicines, which often have poor bioavailability due to their high molecular weight and solubility in water, particularly in oral medicines. This technology can enhance propolis's effects through multi-target therapy and reduce side effects. Experimental approach All publications related to each section of this review were discovered using the search engines Google Scholar, Scopus, and Pubmed. This was only available for publication between 2013 and 2023. The selected publications were used as references in this review after being thoroughly studied. Key results Evaluation of propolis active compounds, the classification of propolis nano formulations, design concepts, and mechanisms of action of propolis nano formulation. Additionally, the challenges and prospects for how these insights can be translated into clinical benefits are discussed. Conclusion In the last ten years, a list of nanoformulation propolis has been reported. This review concludes the difficulties encountered in developing large-scale nanoformulations. To commercialize them, improvements in nano carrier synthesis, standardized evaluation methodology within the framework of strategy process improvement, and Good Manufacturing Practices would be required.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| |
Collapse
|
21
|
Hernández-Martínez JA, Zepeda-Bastida A, Morales-Rodríguez I, Fernández-Luqueño F, Campos-Montiel R, Hereira-Pacheco SE, Medina-Pérez G. Potential Antidiabetic Activity of Apis mellifera Propolis Extraction Obtained with Ultrasound. Foods 2024; 13:348. [PMID: 38275714 PMCID: PMC10815508 DOI: 10.3390/foods13020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have linked phenolic compounds to the inhibition of digestive enzymes. Propolis extract is consumed or applied as a traditional treatment for some diseases. More than 500 chemical compounds have been identified in propolis composition worldwide. This research aimed to determine Mexican propolis extracts' total phenolic content, total flavonoid content, antioxidant activity, and digestive enzyme inhibitory activity (ɑ-amylase and ɑ-glucosidase). In vitro assays measured the possible effect on bioactive compounds after digestion. Four samples of propolis from different regions of the state of Oaxaca (Mexico) were tested (Eloxochitlán (PE), Teotitlán (PT), San Pedro (PSP), and San Jerónimo (PSJ)). Ethanol extractions were performed using ultrasound. The extract with the highest phenolic content was PE with 15,362.4 ± 225 mg GAE/100 g. Regarding the flavonoid content, the highest amount was found in PT with 8084.6 ± 19 mg QE/100 g. ABTS•+ and DPPH• radicals were evaluated. The extract with the best inhibition concentration was PE with 33,307.1 ± 567 mg ET/100 g. After simulated digestion, phenolics, flavonoids, and antioxidant activity decreased by 96%. In contrast, antidiabetic activity, quantified as inhibition of ɑ-amylase and ɑ-glucosidase, showed a mean decrease in enzyme activity of approximately 50% after the intestinal phase. Therefore, it is concluded that propolis extracts could be a natural alternative for treating diabetes, and it would be necessary to develop a protective mechanism to incorporate them into foods.
Collapse
Affiliation(s)
- Javier A. Hernández-Martínez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Armando Zepeda-Bastida
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Irma Morales-Rodríguez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Ramos Arizpe 25900, Coahuila, Mexico;
| | - Rafael Campos-Montiel
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| | - Stephanie E. Hereira-Pacheco
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Km 10.5 de la carretera San Martín Texmelucan, San Felipe Ixtacuixtla, Villa Mariano Matamoros 90120, Tlaxcala, Mexico;
| | - Gabriela Medina-Pérez
- ICAP—Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo de Bravo 43000, Hidalgo, Mexico; (J.A.H.-M.); (A.Z.-B.); (I.M.-R.); (R.C.-M.)
| |
Collapse
|
22
|
Qian Z, Zhang M, Lu T, Yu J, Yin S, Wang H, Wang J. Propolis alleviates ulcerative colitis injury by inhibiting the protein kinase C - transient receptor potential cation channel subfamily V member 1 - calcitonin gene-related peptide/substance P (PKC-TRPV1-CGRP/SP) signaling axis. PLoS One 2024; 19:e0294169. [PMID: 38206948 PMCID: PMC10783729 DOI: 10.1371/journal.pone.0294169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024] Open
Abstract
This study investigated the protective effect of water-soluble propolis (WSP) on colonic tissues in ulcerative colitis (UC) and the role of the protein kinase C - transient receptor potential cation channel subfamily V member 1 - calcitonin gene-related peptide/substance P (PKC-TRPV1-CGRP/SP) signaling pathway. Male SD rats were divided into a control group, a UC model group, various WSP groups (Low-WSP, Medium-WSP, and High-WSP) with UC, and a salazosulfapyridine (SASP) positive control group with UC. After UC was established, the WSP and SASP groups were treated with WSP or SASP, respectively, for 7 d. Each day, body weight measurements were obtained, and the disease activity index (DAI) was recorded by observing fecal characteristics and blood in the stool. After the experiment, hematoxylin and eosin (HE) colonic tissue staining was performed to observe pathological changes, western blotting and immunohistochemistry were performed to detect PKC, TRPV1, CGRP, and SP expression in colonic tissues, and laser confocal microscopy was performed to observe the fluorescence colocalization of PKC/TRPV1, TRPV1/CGRP, and TRPV1/SP. HE staining showed significant colonic tissue structure disruption and inflammatory infiltration in the UC group. Western blotting and immunohistochemistry showed that the expression of PKC, TRPV1, CGRP, and SP in the colonic tissues of the UC group increased significantly compared with that of the control group. Compared with the UC group, the expression of PKC, TRPV1, CGRP, and SP in colonic tissues was significantly reduced in the High-WSP, Medium-WSP, and SASP groups. Immunofluorescence showed the colocalized expression of PKC/TRPV1, TRPV1/CGRP, and TRPV1/SP proteins in the colon tissue of the UC group was significantly reduced after WSP and SASP interventions compared with that of the control group. The results suggest that the mechanism of UC alleviation by propolis may inhibit the PKC-TRPV1-CGRP/SP signaling pathway and the release of inflammatory mediators, thus alleviating inflammation.
Collapse
Affiliation(s)
- Zhen Qian
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Mengjie Zhang
- Graduate School, Wannan Medical College, Wuhu, Anhui province, China
| | - Taiyu Lu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Jiayi Yu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Siyuan Yin
- School of Medical Imageology, Wannan Medical College, Wuhu, Anhui province, China
| | - Haihua Wang
- Department of Physiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui province, China
| | - Jing Wang
- Department of Physiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui province, China
| |
Collapse
|
23
|
Božić DD, Ćirković I, Milovanović J, Bufan B, Folić M, Savić Vujović K, Pavlović B, Jotić A. In Vitro Antibiofilm Effect of N-Acetyl-L-cysteine/Dry Propolis Extract Combination on Bacterial Pathogens Isolated from Upper Respiratory Tract Infections. Pharmaceuticals (Basel) 2023; 16:1604. [PMID: 38004469 PMCID: PMC10674846 DOI: 10.3390/ph16111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial biofilms play an important role in the pathogenesis of chronic upper respiratory tract infections. In addition to conventional antimicrobial therapy, N-acetyl-L-cysteine (NAC) and propolis are dietary supplements that are often recommended as supportive therapy for upper respiratory tract infections. However, no data on the beneficial effect of their combination against bacterial biofilms can be found in the scientific literature. Therefore, the aim of our study was to investigate the in vitro effect of N-acetyl-L-cysteine (NAC) and dry propolis extract in fixed combinations (NAC/dry propolis extract fixed combination) on biofilm formation by bacterial species isolated from patients with chronic rhinosinusitis, chronic otitis media, and chronic adenoiditis. The prospective study included 48 adults with chronic rhinosinusitis, 29 adults with chronic otitis media, and 33 children with chronic adenoiditis. Bacteria were isolated from tissue samples obtained intraoperatively and identified using the MALDI-TOF Vitek MS System. The antimicrobial activity, synergism, and antibiofilm effect of NAC/dry propolis extract fixed combination were studied in vitro. A total of 116 different strains were isolated from the tissue samples, with staphylococci being the most frequently isolated in all patients (57.8%). MICs of the NAC/dry propolis extract fixed combination ranged from 1.25/0.125 to 20/2 mg NAC/mg propolis. A synergistic effect (FICI ≤ 0.5) was observed in 51.7% of strains. The majority of isolates from patients with chronic otitis media were moderate biofilm producers and in chronic adenoiditis they were weak biofilm producers, while the same number of isolates in patients with chronic rhinosinusitis were weak and moderate biofilm producers. Subinhibitory concentrations of the NAC/propolis combination ranging from 0.625-0.156 mg/mL to 10-2.5 mg/mL of NAC combined with 0.062-0.016 mg/mL to 1-0.25 mg/mL of propolis inhibited biofilm formation in all bacterial strains. Suprainhibitory concentrations ranging from 2.5-10 mg/mL to 40-160 mg/mL of NAC in combination with 0.25-1 mg/mL to 4-16 mg/mL of propolis completely eradicated the biofilm. In conclusion, the fixed combination of NAC and dry propolis extract has a synergistic effect on all stages of biofilm formation and eradication of the formed biofilm in bacteria isolated from upper respiratory tract infections.
Collapse
Affiliation(s)
- Dragana D. Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Ivana Ćirković
- Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
| | - Jovica Milovanović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Miljan Folić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Katarina Savić Vujović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, 11129 Belgrade, Serbia
| | - Bojan Pavlović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Jotić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; (J.M.); (M.F.); (K.S.V.); (B.P.); (A.J.)
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
24
|
Rodrigues Esperandim T, Barcelos Ribeiro A, Silva Squarisi I, Teixeira Marcos de Souza L, Olimpio de Souza T, Oliveira Acésio N, Ferreira Conceição Santos M, Kenupp Bastos J, Ricardo Ambrósio S, Crispim Tavares D. Toxicological and chemoprevention studies of Brazilian brown propolis from Araucaria sp. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:791-802. [PMID: 37592437 DOI: 10.1080/15287394.2023.2243976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Brazilian brown propolis (BBP) is a natural product derived predominantly from the south region of Brazil, where Araucaria forests are dominant. Despite its potential as a source of bioactive compounds with leishmanicidal, anti-inflammatory, nociceptive, and antimicrobial properties, BBP has not been comprehensively studied compared to green propolis. Therefore, this study aimed to determine the safety and chemopreventive potential of BBP. The cytotoxicity attributed to BBP was assessed using two different assays, while the Salmonella/microsome assay was employed to evaluate mutagenicity. The acute toxicity attributed to BBP was determined using a zebrafish model, while the chemopreventive potential was investigated utilizing Chinese hamster lung (V79) cell lines. Data demonstrated that BBP exerted cytotoxic effects at concentrations greater than or equal to 10 µg/ml and did not exhibit mutagenicity in Salmonella typhimurium strains TA98 and TA100. However, at the highest concentration tested (4000 µg/plate), BBP induced a significant increase in revertant colonies in S. typhimurium TA102 strain. The LC50 equivalent to 8.83 mg/L was obtained in the acute toxicity evaluation in zebrafish. BBP also showed antigenotoxic effect by significantly reducing chromosomal damage induced by the mutagen doxorubicin in V79 cell cultures at a concentration of 2.5 μg/ml. Compared to Brazilian green and red propolis, BBP exhibited greater toxicity. On the other hand, at lower concentrations, BBP displayed chemopreventive potential, which may be associated with the antioxidant capacity of the extract. These findings contribute to a better understanding of the biological properties and potential applications of BBP in treating various diseases.
Collapse
Affiliation(s)
| | - Arthur Barcelos Ribeiro
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| | - Iara Silva Squarisi
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| | | | - Thiago Olimpio de Souza
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| | - Nathália Oliveira Acésio
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Ricardo Ambrósio
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| | - Denise Crispim Tavares
- University of Franca, Av. Dr. Armando Salles Oliveira, 201, 14.404-600 Franca, São Paulo, Brazil
| |
Collapse
|
25
|
Johnson H, Aquino MR, Snyder A, Collis RW, Franca K, Goldenberg A, Sui JY, Eichenfield DZ, Kozy BJ, Chen JK, Shope C, Goldminz AM, Yu J. Prevalence of allergic contact dermatitis in children with and without atopic dermatitis: A multicenter retrospective case-control study. J Am Acad Dermatol 2023; 89:1007-1014. [PMID: 37768237 DOI: 10.1016/j.jaad.2023.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND As both allergic contact dermatitis and atopic dermatitis (AD) have similar clinical presentations and are characterized by spongiotic dermatitis on skin biopsy, many children with AD are not referred for patch testing and allergic contact dermatitis is underdiagnosed. OBJECTIVE To provide updated prevalence data of common contact allergens in children with and without AD. METHODS This is a retrospective case-control study using the Pediatric Allergic Contact Dermatitis Registry from 2018 to 2022. RESULTS A total of 912 children were included (615 with AD and 297 without AD). Children with AD were more likely to have a longer history of dermatitis (4.1 vs 1.6 years, P < .0001), have seen more providers (2.3 vs 2.1, P = .003), have greater than 1 positive patch test (PPT) result (P = .005), have a greater number of PPT results overall (2.3 vs 1.9, P = .012), and have a more generalized distribution of dermatitis (P = .001). PPT to bacitracin (P = .030), carba mix (P = .025), and cocamidopropyl betaine (P = .0007) were significantly increased in children with AD compared to those without AD. LIMITATIONS Technical variation between providers and potential for misclassification, selection, and recall biases. CONCLUSION Children with AD are significantly more likely to have PPT reactions and should be referred for evaluation of allergic contact dermatitis and obtain patch testing.
Collapse
Affiliation(s)
- Hadley Johnson
- School of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcella R Aquino
- Department of Pediatrics, Division of Allergy & Immunology, Hasbro Children's Hospital, Providence, Rhode Island; Division of Allergy & Immunology, Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alan Snyder
- Department of Dermatology, Medical University of South Carolina, Charleston, South Carolina
| | - Reid W Collis
- Department of Dermatology, Washington University School of Medicine, St. Louis, Missouri
| | - Katlein Franca
- Dr Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Alina Goldenberg
- Dermatologist Medical Group of North County, San Diego, California; Department of Medicine, University of California San Diego, San Diego, California
| | - Jennifer Y Sui
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital, San Diego, California; Department of Dermatology, UC San Diego, La Jolla, California
| | - Dawn Z Eichenfield
- Division of Pediatric and Adolescent Dermatology, Rady Children's Hospital, San Diego, California; Department of Dermatology, UC San Diego, La Jolla, California
| | - Brittany J Kozy
- Division of Pediatric Dermatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Jennifer K Chen
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California
| | - Chelsea Shope
- Department of Dermatology, Medical University of South Carolina, Charleston, South Carolina
| | - Ari M Goldminz
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Chestnut Hill, Massachusetts
| | - JiaDe Yu
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Johnson H, Yu J. Patch Testing Results From the Massachusetts General Hospital Occupational and Contact Dermatitis Clinic, 2017-2022. Dermatitis 2023; 34:525-531. [PMID: 37222747 DOI: 10.1089/derm.2023.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Background: Patch testing is gold standard for identifying the source of allergic contact dermatitis (ACD). Objective: To report patch testing results from the Massachusetts General Hospital (MGH) Occupational and Contact Dermatitis Clinic from 2017 to 2022. Methods: Retrospective analysis of patients referred to MGH for patch testing, 2017-2022. Results: In total, 1438 patients were included. At least 1 positive patch test (PPT) reaction was observed in 1168 (81.2%) patients and at least 1 relevant PPT reaction was observed in 1087 (75.6%) patients. The most common allergen with a PPT was nickel (21.5%), followed by hydroperoxides of linalool (20.4%) and balsam of Peru (11.5%). Sensitization rates statistically increased over time for propylene glycol and decreased for 12 other allergens (all P values <0.0004). Limitations: Retrospective design, single institution tertiary referral population, and variations in allergens and suppliers across the study period. Conclusion: The field of ACD is constantly evolving. Regular analysis of patch test data is crucial to identify emerging and diminishing contact allergen trends.
Collapse
Affiliation(s)
- Hadley Johnson
- From the University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - JiaDe Yu
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu MC, Ghosh S, Jung C, Burgett M, Hongsibsong S. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023; 12:3909. [PMID: 37959028 PMCID: PMC10648409 DOI: 10.3390/foods12213909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract.
Collapse
Affiliation(s)
- Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., Singapore 368819, Singapore;
| | - Pichet Praphawilai
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Jakkrawut Maitip
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand;
| | - Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Merida 5001, Venezuela;
| | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Department of Plant Medical, Andong National University, Andong 36729, Republic of Korea;
| | - Michael Burgett
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (M.B.)
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Arias C, Vásquez B, Salazar LA. Propolis as a Potential Therapeutic Agent to Counteract Age-Related Changes in Cartilage: An In Vivo Study. Int J Mol Sci 2023; 24:14272. [PMID: 37762574 PMCID: PMC10532056 DOI: 10.3390/ijms241814272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is intricately linked to chronic low-grade systemic inflammation, which plays a significant role in various age-related conditions, including osteoarthritis (OA). The aging process significantly influences the development of OA due to alterations in cartilage composition, reduced proteoglycan content, dysregulation of growth factor signaling, and heightened oxidative stress. Propolis, a natural product renowned for its potent antioxidant and anti-inflammatory properties, has the potential to mitigate age-induced changes in cartilage. The primary objective of this study was to rigorously assess the impact of in vivo propolis treatment on the histopathological characteristics of knee articular cartilage in senescent rats. This study involved a cohort of twenty male Sprague-Dawley rats, randomly allocated into four distinct groups for comparative analysis: YR (control group consisting of young rats), SR (senescent rats), SR-EEP (senescent rats treated with an ethanolic extract of propolis, EEP), and SR-V (senescent rats administered with a control vehicle). This study employed comprehensive histological and stereological analyses of knee articular cartilage. Propolis treatment exhibited a significant capacity to alleviate the severity of osteoarthritis, enhance the structural integrity of cartilage, and augment chondrocyte density. These promising findings underscore the potential of propolis as a compelling therapeutic agent to counteract age-related alterations in cartilage and, importantly, to potentially forestall the onset of osteoarthritis.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile;
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Centre of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Luis A. Salazar
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
29
|
Sanyal A, Ghosh A, Roy C, Mazumder I, Marrazzo P. Revolutionizing the Use of Honeybee Products in Healthcare: A Focused Review on Using Bee Pollen as a Potential Adjunct Material for Biomaterial Functionalization. J Funct Biomater 2023; 14:352. [PMID: 37504847 PMCID: PMC10381877 DOI: 10.3390/jfb14070352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
The field of biomedical engineering highly demands technological improvements to allow the successful engraftment of biomaterials requested for healing damaged host tissues, tissue regeneration, and drug delivery. Polymeric materials, particularly natural polymers, are one of the primary suitable materials employed and functionalized to enhance their biocompatibility and thus confer advantageous features after graft implantation. Incorporating bioactive substances from nature is a good technique for expanding or increasing the functionality of biomaterial scaffolds, which may additionally encourage tissue healing. Our ecosystem provides natural resources, like honeybee products, comprising a rich blend of phytochemicals with interesting bioactive properties, which, when functionally coupled with biomedical biomaterials, result in the biomaterial exhibiting anti-inflammatory, antimicrobial, and antioxidant effects. Bee pollen is a sustainable product recently discovered as a new functionalizing agent for biomaterials. This review aims to articulate the general idea of using honeybee products for biomaterial engineering, mainly focusing on describing recent literature on experimental studies on biomaterials functionalized with bee pollen. We have also described the underlying mechanism of the bioactive attributes of bee pollen and shared our perspective on how future biomedical research will benefit from the fabrication of such functionalized biomaterials.
Collapse
Affiliation(s)
- Arka Sanyal
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Anushikha Ghosh
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Chandrashish Roy
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Ishanee Mazumder
- School of Biotechnology, KIIT Deemed University, Bhubaneswar 751024, India
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
30
|
Pandey P, Khan F, Upadhyay TK, Giri PP. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem Biol Drug Des 2023; 102:201-216. [PMID: 36929632 DOI: 10.1111/cbdd.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, there is a lot of public and scientific interest in using phytochemicals to treat human ailments. Existing cancer medicines still run across obstacles, despite significant advancements in the field. For instance, chemotherapy may result in severe adverse effects, increased drug resistance, and treatment failure. Natural substances that are phytochemically derived provide innovative approaches as potent therapeutic molecules for the treatment of cancer. Bioactive natural compounds may enhance chemotherapy for cancer by increasing the sensitivity of cancer cells to medicines. Propolis has been found to interfere with the viability of cancer cells, among other phytochemicals. Of all the components that make up propolis, caffeic acid phenethyl ester (CAPE) (a flavonoid) has been the subject of the most research. It demonstrates a broad spectrum of therapeutic uses, including antitumor, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, hepatoprotective, neuroprotective, and cardioprotective effects. Studies conducted in vitro and in vivo have demonstrated that CAPE specifically targets genes involved in cell death, cell cycle regulation, angiogenesis, and metastasis. By altering specific signaling cascades, such as the NF-κB signaling pathway, CAPE can limit the proliferation of human cancer cells. This review highlights the research findings demonstrating the anticancer potential of CAPE with a focus on multitargeted molecular and biological implications in various cancer models.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Pavan Prakash Giri
- Department of Chemistry, Noida Institute of Engineering & Technology, Greater Noida, India
| |
Collapse
|
31
|
Faheem MA, Akhtar T, Naseem N, Aftab U, Zafar MS, Hussain S, Shahzad M, Gobe GC. Chrysin Is Immunomodulatory and Anti-Inflammatory against Complete Freund's Adjuvant-Induced Arthritis in a Pre-Clinical Rodent Model. Pharmaceutics 2023; 15:1225. [PMID: 37111711 PMCID: PMC10144384 DOI: 10.3390/pharmaceutics15041225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chrysin (5,7-dihydroxyflavone) has many pharmacological properties including anti-inflammatory actions. The objective of this study was to evaluate the anti-arthritic activity of chrysin and to compare its effect with the non-steroidal anti-inflammatory agent, piroxicam, against complete Freund's adjuvant (CFA)-induced arthritis in a pre-clinical model in rats. Rheumatoid arthritis was induced by injecting CFA intra-dermally in the sub-plantar region of the left hind paw of rats. Chrysin (50 and 100 mg/kg) and piroxicam (10 mg/kg) were given to rats with established arthritis. The model of arthritis was characterized using an index of arthritis, with hematological, biological, molecular, and histopathological parameters. Treatment with chrysin significantly reduced the arthritis score, inflammatory cells, erythrocyte sedimentation rate, and rheumatoid factor. Chrysin also reduced the mRNA levels of tumor necrosis factor, nuclear factor kappa-B, and toll-like recepter-2 and increased anti-inflammatory cytokines interleukin-4 and -10, as well as the hemoglobin levels. Using histopathology and microscopy, chrysin reduced the severity of arthritis in joints, infiltration of inflammatory cells, subcutaneous inflammation, cartilage erosion, bone erosion, and pannus formation. Chrysin showed comparable effects to piroxicam, which is used for the treatment of rheumatoid arthritis. The results showed that chrysin possesses anti-inflammatory and immunomodulatory effects that make it a potential drug for the treatment of arthritis.
Collapse
Affiliation(s)
- Muhammad Asif Faheem
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Nadia Naseem
- Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore 54600, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | | | - Safdar Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Glenda Carolyn Gobe
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Moskwa J, Naliwajko SK, Dobiecka D, Socha K. Bee Products and Colorectal Cancer—Active Components and Mechanism of Action. Nutrients 2023; 15:nu15071614. [PMID: 37049455 PMCID: PMC10097172 DOI: 10.3390/nu15071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies in the world. Lifestyle and eating patterns may have a significant impact on the prevention of this type of cancer. Bioactive food ingredients influence the gut microbiome and can have a protective effect. Bee products (honey, propolis, royal jelly, and bee venom) or pharmacologically active fractions obtained from them are widely used in many fields of medicine, pharmacy, and cosmetics. Some evidence suggests that bee products may have anti-cancer potential. The main bioactive components with anti-colon cancer potential from propolis and bee honey are polyphenols such as pinocembrin, galangin, luteolin, CAPE, Artepilin C, chrysin, caffeic, and p-coumaric acids. This review is focused on the new data on epidemiology, risk factors for colon cancer, and current reports on the potential role of bee products in the chemoprevention of this type of cancer.
Collapse
|
33
|
Sajjadi SS, Bagherniya M, Soleimani D, Siavash M, Askari G. Effect of propolis on mood, quality of life, and metabolic profiles in subjects with metabolic syndrome: a randomized clinical trial. Sci Rep 2023; 13:4452. [PMID: 36932147 PMCID: PMC10022550 DOI: 10.1038/s41598-023-31254-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Metabolic syndrome (MeS) is a common multifaceted disorder. Plants contain antioxidant bioactive compounds, which are beneficial to improve the health condition of patients with MeS. Propolis is a hive natural product that is composed of various constituent. We aimed to assess the effects of Iranian propolis as a natural and safe agent on indicators of MeS, quality of life and mood status in individuals with MeS. In total, 66 interested eligible patients recruited to the present study. Participants were randomly assigned to consume a tablet at dose of 250 mg of propolis extract, twice daily for 12 weeks or placebo. Propolis supplementation could lead to a significant reduction in waist circumference (WC), increase in physical functioning, general health and the overall score of SF-36 compared with placebo group (P-value < 0.05). However, no significant differences were observed regarding other anthropometric indices and biochemical parameters between two groups (P-value > 0.05). The current study indicated that propolis can be effective in decreasing WC and improving physical health and quality of life, while had no significant effects on other components of MeS among subjects with this syndrome. Clinical trials registration Iran Registry of Clinical Trials.ir IRCT20121216011763N49, registration date 23/12/2020.
Collapse
Affiliation(s)
- Sana Sadat Sajjadi
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Soleimani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
35
|
Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis Photodyn Ther 2023; 41:103208. [PMID: 36417972 PMCID: PMC9675939 DOI: 10.1016/j.pdpdt.2022.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease and there are no available treatments that specifically target the monkeypox virus. Antimicrobial photodynamic therapy (aPDT) is a non-invasive approach that has been introduced as a targeted adjuvant treatment against various microbial infections. In this study, we used a computational strategy to investigate the potential of aPDT using propolis-benzofuran A against the Monkeypox virus. METHODS In this in silico study, the evaluation of drug-likeness, molecular properties, and bioactivity of propolis-benzofuran A was carried out using SwissADME. Pro-Tox II and OSIRIS servers were used to identify the organ toxicities and toxicological endpoints of propolis-benzofuran A. Molecular docking approach was employed to screen the potential binding modes of propolis-benzofuran A ligand with the Monkeypox virus A48R protein (PDB ID: 2V54). RESULTS The results of the computational investigation revealed that propolis-benzofuran A obeyed all the criteria of Lipinski's rule of five and exhibited drug-likeness. The photosensitizing agent tested was categorized as toxicity class-5 and was found to be non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. The docking studies employing a predicted three-dimensional model of Monkeypox virus A48R protein with propolis-benzofuran A ligand exhibited good binding affinity (-7.84 kcal/mol). DISCUSSION The computational simulation revealed that propolis-benzofuran A had a strong binding affinity with the Monkeypox virus A48R protein. Hence, aPDT based on this natural photosensitizer can be proposed as an adjuvant treatment against the Monkeypox virus.
Collapse
|
36
|
Fabio Turco J, Benhur Mokochinski J, Reyes Torres Y. Lipidomic Analysis of Geopropolis of Brazilian Stingless Bees by LC-HRMS. Food Res Int 2023; 167:112640. [PMID: 37087233 DOI: 10.1016/j.foodres.2023.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Stingless bees (Meliponini) represent over than 500 species, found in tropical and sub-tropical regions of the world. They produce geopropolis, a resinous natural product containing bioactive compounds, which is commonly used in folk medicine. In the current study, LC-HRMS and bioinformatic tools were used to carry out for the first time the lipidomic analysis of geopropolis from indigenous Brazilian stingless bees. As a result, 61 compounds of several lipid classes were identified with elevated degree of confidence. Then, we demonstrated that lipids in geopropolis are not restricted to waxes and fatty acids; but fatty amides and amines, phenolic lipids, resorcinols, retinoids, abietanoids, diterpenoids, pentacyclic triterpenoids, prostaglandins, retinoids, and steroids were found. In addition, multivariate analysis, based on the lipidomic profile of extracts, reinforces the assumption that the species of stingless bees, as well as the geographical origin are relevant factors to affect geopropolis composition once that the lipidic profile allowed the discrimination of geopropolis in groups related to the geographical origin, bee specie or bee genus. The lipidic profile also suggest a selective forage habits of T. angustula, which seems to collect resins from more specific vegetal sources regardless geographic origin, while other stingless bees, such as M. marginata and M. quadrifasciata, are less selective and may adapt to collect resins from a wider variety of plants.
Collapse
Affiliation(s)
- João Fabio Turco
- Department of Chemistry, State University of Midwest (UNICENTRO), Guarapuava, Parana, Brazil
| | - João Benhur Mokochinski
- Proteomics and Metabolomics Facility, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, United Kingdom
| | - Yohandra Reyes Torres
- Department of Chemistry, State University of Midwest (UNICENTRO), Guarapuava, Parana, Brazil.
| |
Collapse
|
37
|
Ożarowski M, Karpiński TM. The Effects of Propolis on Viral Respiratory Diseases. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010359. [PMID: 36615554 PMCID: PMC9824023 DOI: 10.3390/molecules28010359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
- Correspondence:
| |
Collapse
|
38
|
Popova M, Trusheva B, Chimshirova R, Antonova D, Gechovska K, Thanh LN, Lien NTP, Phuong DTL, Bankova V. Chemical Profile and Antioxidant Capacity of Propolis from Tetragonula, Lepidotrigona, Lisotrigona and Homotrigona Stingless Bee Species in Vietnam. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227834. [PMID: 36431935 PMCID: PMC9696581 DOI: 10.3390/molecules27227834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to analyze and compare the chemical profile and antioxidant capacity of propolis from different bee species and different regions. The chemical profiles of propolis from six stingless bee species (Tetragonula iridipennis, T. laeviceps, Lepidotrigona terminata, L. ventralis, Lisotrigona carpenteri and Homotrigona apicalis) collected from a total of eight locations in Vietnam were investigated by gas chromatography-mass spectrometry (GC-MS). More than 70 compounds were identified, amongst which phenolic lipids (cardanols, resorcinols and anacardic acids), aromatic acids, triterpenes and xanthones. Taxonomic markers for Mangifera indica (phenolic lipids and cycloartane triterpenes) were detected in propolis from bees of the genera Tetragonula and Lepidotrigona, although in different amounts, whereas propolis from H. apicalis was characterized by triterpenes of the amyrine type, typical of dipterocarp trees. A clear discrimination between both groups was observed by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Propolis from Tetragonula and Lepidotrigona spp. and from Lisotrigona carpenteri, which is rich in xanthones, possesses higher radical scavenging and ferric-reducing capacity than that from H. apicalis. Propolis produced by all six stingless bee species in Vietnam was analyzed for the first time. In addition, this is the first report on L. carpenteri propolis.
Collapse
Affiliation(s)
- Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
- Correspondence:
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Daniela Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Kamelia Gechovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Le Nguyen Thanh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | - Nguyen Thi Phuong Lien
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
| | | | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, Str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
39
|
Vică ML, Glevitzky M, Dumitrel GA, Bostan R, Matei HV, Kartalska Y, Popa M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics (Basel) 2022; 11:1552. [PMID: 36358206 PMCID: PMC9686581 DOI: 10.3390/antibiotics11111552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2023] Open
Abstract
The purpose of this study was to review the physicochemical characterization of Romanian honey and propolis and their antifungal effect on different strains. As an indicator of environmental pollution, lead exceeded the allowed limits in two study areas. The relationship between the acidity and electrical conductivity of polyfloral honey and the antioxidant activity with the total content of phenolics and flavonoids was investigated. The antifungal activity of 13 polyfloral honey and propolis samples from North-West and Central Romania and 12 samples from Alba County was investigated against six fungal strains: Aspergillus niger, Aspergillus flavus, Candida albicans, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum. All honey and propolis samples exhibited an antifungal effect. The most sensitive strains were P. chrysogenum and R. stolonifer for honey and P. chrysogenum and F. oxisporumn for propolis. A two-way analysis of variance was used to evaluate the correlations between the diameter of the inhibition zones for the strains and the propolis extracts. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type and the geographical origin of honey and propolis. Pearson's correlation coefficient shows a significant positive linear relationship between the diameter of the inhibition zone and the flavonoid and phenol concentration of honey and propolis, respectively.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Roxana Bostan
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Yordanka Kartalska
- Department of Microbiology and Ecological Biotechnologies, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| |
Collapse
|