1
|
Cui D, Ling M, Huang Y, Duan C, Lan Y. Micro‑oxygenation in red wines: Current status and future perspective. Food Chem 2025; 464:141678. [PMID: 39454438 DOI: 10.1016/j.foodchem.2024.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Micro‑oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.
Collapse
Affiliation(s)
- Dongsheng Cui
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yongce Huang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Wang Q, Cui X, Wang J, Chang H, Wang J, Zhang A, Zhou Y, Xu Z, Dai L, Han G. Impact of Condensed Tannin and Sulfur Dioxide Addition on Acetaldehyde Accumulation and Anthocyanin Profile of Vitis vinifera L. Cv. Cabernet Sauvignon Wines During Alcoholic Fermentation. Molecules 2024; 29:5238. [PMID: 39598628 PMCID: PMC11596415 DOI: 10.3390/molecules29225238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Acetaldehyde is a key carbonyl by-product during red wine alcoholic fermentation; it is reactive and takes part in certain reactions involving anthocyanin. The aim of this study was to investigate the influence of SO2 and condensed tannin on the acetaldehyde accumulation of Saccharomyces cerevisiae (S. cerevisiae) during alcoholic fermentation and the ripple effect on wine anthocyanin. In this study, six sets of Cabernet Sauvignon alcoholic fermentation with two different sulfur levels (HS and LS) were carried out by adding exogenous condensed tannins before fermentation (T0) in the acetaldehyde rise period (TA) of S. cerevisiae and at the end of fermentation (TE), separately. The acetaldehyde evolution was identified during fermentation and anthocyanin was analyzed comparatively. The results showed that HS treatment slowed down the degradation of acetaldehyde, while tannins accelerated the degradation of acetaldehyde during alcoholic fermentation, especially TA wines. Furthermore, TA wines possessed a unique anthocyanin profile after fermentation regardless of SO2 level compared with other wines. These results suggest that acetaldehyde-mediated anthocyanin polymerization most likely occurs timely at the acetaldehyde production phase of S. cerevisiae during alcoholic fermentation, and managing tannin addition time during production could be used to regulate the anthocyanin profile.
Collapse
Affiliation(s)
- Qinglong Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Jiaqi Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Heqiang Chang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Junzhe Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Ang Zhang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, China;
| | - Yang Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
- Wei Long Grape Wine Co., Ltd., Yantai 265704, China
| | - Zhiyong Xu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
- Wei Long Grape Wine Co., Ltd., Yantai 265704, China
| | - Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.W.); (X.C.); (J.W.); (H.C.); (J.W.); (Y.Z.); (Z.X.)
| |
Collapse
|
3
|
Wang G, Kumar Y. Mechanisms of the initial stage of non-enzymatic oxidation of wine: A mini review. J Food Sci 2024; 89:2530-2545. [PMID: 38563093 DOI: 10.1111/1750-3841.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Non-enzymatic oxidation is a primary factor affecting wine quality during bottling or aging. Although red and white wines exhibit distinct responses to oxidation over time, the fundamental mechanisms driving this transformation remain remarkably uniform. Non-enzymatic oxidation of wine commences with the intricate interplay between polyphenols and oxygen, orchestrating a delicate redox dance with iron and copper. Notably, copper emerges as an accelerant in this process. To safeguard wine integrity, sulfur dioxide (SO2) is routinely introduced to counteract the pernicious effects of oxidation by neutralizing hydrogen peroxide and quinone. In this comprehensive review, the initial stages of non-enzymatic wine oxidation are examined. The pivotal roles played by polyphenols, oxygen, iron, copper, and SO2 in this complex oxidative process are systematically explored. Additionally, the effect of quinone formation on wine characteristics and the intricate dynamics governing oxygen availability are elucidated. The potential synergistic or additive effects of iron and copper are probed, and the precise balance between SO2 and oxygen is scrutinized. This review summarizes the mechanisms involved in the initial stages of non-enzymatic oxidation of wine and anticipates the potential for further research.
Collapse
Affiliation(s)
- Guanghao Wang
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Yogesh Kumar
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| |
Collapse
|
4
|
Geng K, Lin Y, Zheng X, Li C, Chen S, Ling H, Yang J, Zhu X, Liang S. Enhanced Expression of Alcohol Dehydrogenase I in Pichia pastoris Reduces the Content of Acetaldehyde in Wines. Microorganisms 2023; 12:38. [PMID: 38257867 PMCID: PMC10820543 DOI: 10.3390/microorganisms12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Acetaldehyde is an important carbonyl compound commonly detected in wines. A high concentration of acetaldehyde can affect the flavor of wines and result in adverse effects on human health. Alcohol dehydrogenase I (ADH1) in Saccharomyces cerevisiae catalyzes the reduction reaction of acetaldehyde into ethanol in the presence of cofactors, showing the potential to reduce the content of acetaldehyde in wines. In this study, ADH1 was successfully expressed in Pichia pastoris GS115 based on codon optimization. Then, the expression level of ADH1 was enhanced by replacing its promoter with optimized promoters and increasing the copy number of the expression cassette, with ADH1 being purified using nickel column affinity chromatography. The enzymatic activity of purified ADH1 reached 605.44 ± 44.30 U/mg. The results of the effect of ADH1 on the content of acetaldehyde in wine revealed that the acetaldehyde content of wine samples was reduced from 168.05 ± 0.55 to 113.17 ± 6.08 mg/L with the addition of 5 mM NADH and the catalysis of ADH1, and from 135.53 ± 4.08 to 52.89 ± 2.20 mg/L through cofactor regeneration. Our study provides a novel approach to reducing the content of acetaldehyde in wines through enzymatic catalysis.
Collapse
Affiliation(s)
- Kun Geng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xueyun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Fermentation Engineering of Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - He Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiangyu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Foti P, Randazzo CL, Russo M, Di Sanzo R, Romeo FV, Scilimati A, Miciaccia M, Grazia Perrone M, Caggia C. Effect of microbial fermentation on functional traits and volatiloma profile of pâté olive cake. Food Res Int 2023; 174:113510. [PMID: 37986418 DOI: 10.1016/j.foodres.2023.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In this study, the pâté olive cake (POC), a by-product of the olive oil industry, was subjected to fermentation in a bioreactor using three microbial strains, Lactiplantibacillus plantarum, Wickerhamomyces anomalus and Candida boidinii, previously isolated from fermented table olive brines. Chemical, microbiological and molecular analyses were carried out at the beginning and at the end of fermentation. The lowest pH value (4.09) was reached after 10 days in sample inoculated with C. boidinii. Microbiological analyses exhibited the dominance of yeasts throughout the whole process (from 5.5 to 7.80 Log10 CFU/g), as confirmed by PCR-DGGE analysis. The microbial cultures affected both phenolic and volatile organic compound profiles. Moreover, the POC samples treated with different microbial strains were investigated for biological assays. The sample fermented with W. anomalus showed the greatest diffusion speed of transepithelial transport through Caco-2 cell, the highest inhibitory activity towards the tested cyclooxygenases and the highest antioxidant activity.
Collapse
Affiliation(s)
- Paola Foti
- Department of Agricultural, Food and Environment, Di3A, University of Catania, via S. Sofia 100, 95123 Catania, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy
| | - Cinzia L Randazzo
- Department of Agricultural, Food and Environment, Di3A, University of Catania, via S. Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin off University of Catania, via S. Sofia 100, 95123 Catania, Italy; CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy
| | - Rosa Di Sanzo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via Salita Melissari, 89124 Reggio Calabria, Italy
| | - Flora V Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia 190, 95024 Acireale, Italy.
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, Di3A, University of Catania, via S. Sofia 100, 95123 Catania, Italy; ProBioEtna srl, Spin off University of Catania, via S. Sofia 100, 95123 Catania, Italy; CERNUT (Interdepartmental Research Centre in Nutraceuticals and Health Products), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|