1
|
Jiang X, Wang X, Zhang M, Yu L, He J, Wu S, Yan J, Zheng Y, Zhou Y, Chen Y. Associations between specific dietary patterns, gut microbiome composition, and incident subthreshold depression in Chinese young adults. J Adv Res 2024; 65:183-195. [PMID: 38879123 PMCID: PMC11518947 DOI: 10.1016/j.jare.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION The interplay between influential factors and the incidence of subthreshold depression (SD) in young adults remains poorly understood. OBJECTIVES This study sought to understand the dietary habits, gut microbiota composition, etc. among individuals with SD in young adults and to investigate their association with SD occurrence. METHODS Employing a cross-sectional approach, 178 individuals with SD, aged 18-32 years, were matched with 114 healthy counterparts. SD status was evaluated using the Zung Self-rating Depression Scale (SDS), Zung Self-rating Anxiety Scale (SAS), Beck Depression Inventory 2nd version (BDI-II), the 17-item Hamilton Rating Scales of Depression (HAMD-17), and Pittsburgh Sleep Quality Index (PSQI). Metagenomic sequencing was utilized to identify fecal microbial profiles. Dietary patterns were discerned via factor analysis of a 25-item food frequency questionnaire (FFQ). Logistic regression analysis and mediation analysis were performed to explore the potential links between gut microbiota, dietary patterns, and incident SD. RESULTS Data on dietary habits were available for 292 participants (mean [SD] age, 22.1 [2.9] years; 216 [73.9 %] female). Logistic regression analysis revealed that dietary patterns Ⅰ (odds ratio [OR], 0.34; 95 % CI, 0.15-0.75) and IV (OR, 0.39; 95 % CI, 0.17-0.86 and OR, 0.39; 95 % CI, 0.18-0.84) were associated with reduced risk of SD. Distinct microbial profiles were observed in young adults with SD, marked by increased microbial diversity and taxonomic alterations. Moreover, mediation analysis suggested Veillonella atypica as a potential mediator linking SDS or BDI-II scores with a healthy dietary pattern rich in bean products, coarse grains, nuts, fruits, mushrooms, and potatoes (β = 0.25, 95 % CI: 0.02-0.78 and β = 0.18, 95 % CI: 0.01-0.54). CONCLUSIONS Our findings highlight the complex interplay between dietary patterns, gut microbiota, and the risk of developing SD in young adults, underscoring the potential for dietary interventions and microbiome modulation in mental health promotion.
Collapse
Affiliation(s)
- Xiumin Jiang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Sleep Research Institute of Integrative Medicine, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- Rehabilitation Center, Counseling Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanyuan Zhou
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; South China Research Center for Acupuncture and Moxibustion, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
2
|
Tchinda Defo SH, Moussa D, Bouvourné P, Guédang Nyayi SD, Woumitna GC, Kodji K, Wado EK, Ngatanko Abaissou HH, Foyet HS. Unpredictable chronic mild stress induced anxio-depressive disorders and enterobacteria dysbiosis: Potential protective effects of Detariummicrocarpum. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118940. [PMID: 39423942 DOI: 10.1016/j.jep.2024.118940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Detarium microcarpum Guill. & Perr. is used traditionally in Far North Cameroun to treat stomach aches, anxiety, epilepsy, and other mental disorders. AIM OF THE STUDY Evaluate the anxiolytic and antidepressant-like effects of D. microcarpum (DM) in unpredictable chronic mild stress (UCMS) model of depression in male rats and its impact on fecal enterobacteria of stressed rats. MATERIALS AND METHODS Rats were handled daily (control) or subjected to the UCMS procedure for 42 days. Anxiety-like behaviors were assessed using the light and dark box test (LBD) and the open field test (OFT). Depressive-like behaviors were assessed using the forced swimming test (FST), the sucrose preference test (SPT), and the novelty suppressed feeding test (NSFT). Feces were then collected, followed by blood, brain, and duodenum sections after sacrifice. Monoamine levels, pro-inflammatory cytokines, oxidative stress factors, and nitrosative stress were assessed. Feces were introduced into Hectoen enteric agar for the identification of enterobacteria. An in vitro growth test was performed. RESULTS The DM ethanolic extract has significantly increased the time spent in the light box, in the LBD, and in the center area of the OFT. Moreover, the extract has significantly reduced the preference for sucrose in the SPT, the time of immobility in the FST, and the latency period to consume the pet in the NSFT. DM extract has significantly reduced serum cortisol levels. It also significantly decreased the pro-inflammatory cytokines TNF-α and Il-1β in both brain and duodenum homogenate. DM has increased the brain's serotonin, GABA, and dopamine levels. The DM extract also decreased the MDA and nitrite levels. It also increased the SOD and CAT activities in both brain and duodenal homogenate. Histologically, the DM extract restored the cell's density in hippocampi sections and prevented gut inflammation and peroxidation characterizing leaky gut syndrome. DM extract has no effect on the growth of enterobacteria species isolated in vitro. CONCLUSION The ethanolic extract of DM would have anxiolytic and antidepressant effects via the modulation of the HPA axis, brain antioxidant enzyme activities, inflammation, and nitrosative stress. Moreover, it could act by preventing leaky gut syndrome.
Collapse
Affiliation(s)
- Serge Hermann Tchinda Defo
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Djaouda Moussa
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box: 55, Maroua, Cameroon.
| | - Parfait Bouvourné
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Simon Désiré Guédang Nyayi
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Guillaume Camdi Woumitna
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Kalib Kodji
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Eglantine Keugong Wado
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Hervé Hervé Ngatanko Abaissou
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| | - Harquin Simplice Foyet
- Laboratory of Cognitive and Behavioural Neuroscience, Faculty of Science, University of Maroua, Cameroon P.O. Box: 814, Maroua, Cameroon.
| |
Collapse
|
3
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
4
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
5
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|