1
|
Stuart DD, Van Zant W, Valiulis S, Malinick AS, Hanson V, Cheng Q. Trends in surface plasmon resonance biosensing: materials, methods, and machine learning. Anal Bioanal Chem 2024; 416:5221-5232. [PMID: 38839686 DOI: 10.1007/s00216-024-05367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Surface plasmon resonance (SPR) proves to be one of the most effective methods of label-free detection and has been integral for the study of biomolecular interactions and the development of biosensors. This trend delves into the latest SPR research and progress built upon the Kretschmann configuration, a pivotal platform, and highlights three key developments that have enhanced the capabilities of the technique. We will first cover a range of explorations of novel plasmonic materials that have shaped SPR performance. Innovative signal transduction and collection, which leverages traditional materials and emerging alternatives, will then be discussed. Finally, the evolving landscape of data analysis, including the integration of machine learning algorithms to navigate complex SPR datasets, will be reviewed. We will also discuss the implementation of these improvements that have enabled new biosensing functions. These advancements not only pave the way for enhanced biosensing in general but also open new avenues for the technique to play a more significant role in research concerning human health.
Collapse
Affiliation(s)
- Daniel D Stuart
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Westley Van Zant
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Santino Valiulis
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | | | - Victor Hanson
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Oldak L, Zielinska Z, Milewska P, Chludzinska-Kasperuk S, Latoch E, Konończuk K, Krawczuk-Rybak M, Starosz A, Grubczak K, Reszeć J, Gorodkiewicz E. Changes in the Concentrations of Proangiogenic Cytokines in Human Brain Glioma and Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:2586. [PMID: 38473833 DOI: 10.3390/ijms25052586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) and glioma are some of the most common malignancies, with ALL most often affecting children and glioma affecting adult men. Proangiogenic cytokines and growth factors play an important role in the development of both of these tumors. Glioma is characterized by an extremely extensive network of blood vessels, which continues to expand mainly in the process of neoangiogenesis, the direct inducers of which are cytokines from the family of vascular endothelial growth factors, i.e., vascular endothelial growth factor (VEGF-A) and its receptor vascular endothelial growth factor receptor 2 (VEGF-R2), as well as a cytokine from the fibroblast growth factor family, fibroblast growth factor 2 (FGF-2 or bFGF). Growth factors are known primarily for their involvement in the progression and development of solid tumors, but there is evidence that local bone marrow angiogenesis and increased blood vessel density are also present in hematological malignancies, including leukemias. The aim of this study was to examine changes in the concentrations of VEGF-A, VEGF-R2, and FGF-2 (with a molecular weight of 17 kDa) in a group of patients divided into specific grades of malignancy (glioma) and a control group; changes of VEGF-A and FGF-2 concentrations in childhood acute lymphoblastic leukemia and a control group; and to determine correlations between the individual proteins as well as the influence of the patient's age, diet, and other conditions that may place the patient in the risk group. During the statistical analysis, significant differences in concentrations were found between the patient and control groups in samples from people with diagnosed glioma and from children with acute lymphoblastic leukemia, but in general, there are no significant differences in the concentrations of VEGF-A, VEGF-R2, and FGF-2 between different grades of glioma malignancy. Among individuals treated for glioma, there was no significant impact from the patient's gender and age, consumption of food from plastic packaging, frequency of eating vegetables and fruit, smoking of tobacco products, the intensity of physical exercise, or the general condition of the body (Karnofsky score) on the concentrations of the determined cytokines and receptor. The listed factors do not bring about an actual increase in the risk of developing brain glioma.
Collapse
Affiliation(s)
- Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | | | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Katarzyna Konończuk
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Joanna Reszeć
- Biobank, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
- Department of Medical Pathology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
3
|
Bogdan S, Puścion-Jakubik A, Klimiuk K, Socha K, Kochanowicz J, Gorodkiewicz E. The Levels of Leptin, Cystatin C, Neuropilin-1 and Tau Protein in Relation to Dietary Habits in Patients with Alzheimer's Disease. J Clin Med 2023; 12:6855. [PMID: 37959320 PMCID: PMC10650913 DOI: 10.3390/jcm12216855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older people. Its prevalence is expected to increase, and therefore it poses a serious challenge to the healthcare system. The aim of the study was to assess the concentration of leptin, cystatin C, neuropilin-1 and tau protein, as well as the influence of dietary habits on these parameters, in a group of AD patients (n = 110) compared to 60 healthy people (n = 60). It has been shown that AD patients, compared to healthy people, are characterized by significantly higher median concentrations of leptin (9.97 vs. 3.08), cystatin c (1.53 vs. 0.56) and tau protein (8.46 vs. 4.19), but significantly lower median neuropilin-1 (69.94 vs. 167.28). Multiple regression analyses showed that leptin levels could be explained by dietary habits in 27%, cystatin C in 51%, neuropilin-1 in 41% and tau protein in 25% of cases. Modification of eating habits may contribute to improving the values of the discussed parameters.
Collapse
Affiliation(s)
- Sylwia Bogdan
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland; (S.B.); (E.G.)
| | - Anna Puścion-Jakubik
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland;
| | - Katarzyna Klimiuk
- Podlasie Center of Psychogeriatrics, Swobodna 38 Street, 15-756 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, M. Skłodowskiej-Curie 24a Street, 15-276 Bialystok, Poland;
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland; (S.B.); (E.G.)
| |
Collapse
|
4
|
Tokarzewicz A, Ołdak Ł, Młynarczyk G, Klekotka U, Gorodkiewicz E. A New Approach to the Quantification of Fibroblast Growth Factor 23-An Array Surface Plasmon Resonance Imaging Biosensor. Int J Mol Sci 2023; 24:15327. [PMID: 37895007 PMCID: PMC10607372 DOI: 10.3390/ijms242015327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A new biosensor based on the "surface plasmon resonance imaging (SPRi)" detection technique for the quantification of "fibroblast growth factor 23 (FGF23)" has been developed. FGF23 is mainly produced in bone tissues as a phosphaturic hormone that forms a trimeric complex with "fibroblast growth factor receptor 1 (FGFR1)" and αKlotho upon secretion. FGF23 stimulates phosphate excretion and inhibits the formation of active vitamin D in the kidneys. FGF23 has been shown to play a role in bone carcinogenesis and metastasis. The newly developed method, based on the array SPRi biosensor, was validated-the precision, accuracy, and selectivity were acceptable, and yielded less than ±10% recovery. The rectilinear response of the biosensor ranges from 1 to 75 pg/mL. The limit of detection was 0.033 pg/mL, and the limit of quantification was 0.107 pg/mL. The biosensor was used to determine FGF23 concentrations in the blood plasma of healthy subjects and patients with "clear cell" renal cell carcinoma (ccRCC). The obtained results were compared with those measured through an "enzyme-linked immunosorbent assay (ELISA)". The determined Pearson correlation coefficients were 0.994 and 0.989, demonstrating that the newly developed biosensor can be used as a competitive method for the ELISA.
Collapse
Affiliation(s)
- Anna Tokarzewicz
- Department of Medical Biochemistry, Medical University of Bialystok, A. Mickiewicza 2C St., 15-089 Bialystok, Poland
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland; (Ł.O.); (E.G.)
| | - Grzegorz Młynarczyk
- Department of Urology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A St., 15-276 Bialystok, Poland;
| | - Urszula Klekotka
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland;
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland; (Ł.O.); (E.G.)
| |
Collapse
|