1
|
Vicidomini C, Fontanella F, D’Alessandro T, Roviello GN. A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2024; 14:1330. [PMID: 39456263 PMCID: PMC11506269 DOI: 10.3390/biom14101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer's disease (AD) and Parkinson's disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| | - Francesco Fontanella
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Tiziana D’Alessandro
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| |
Collapse
|
2
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
3
|
Grzelczyk J, Pérez-Sánchez H, Carmena-Bargueño M, Rodríguez-Martínez A, Budryn G. Assessment of the Interaction of Acetylcholinesterase Binding with Bioactive Compounds from Coffee and Coffee Fractions Digested In Vitro in the Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365899 PMCID: PMC11487712 DOI: 10.1021/acs.jafc.4c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The aim of the study was to evaluate the degree of acetylcholinesterase (AChE) inhibition by green and light- and dark-roasted coffee extracts and their fractions after digestion in a simulated gastrointestinal tract. The analysis was carried out using isothermal titration calorimetry, molecular docking, and dynamics simulations. The results showed that 3-O-caffeoylquinic acid binds strongly to AChE through hydrogen interactions with the amino acids ARG289A, HIS440A, and PHE288A and hydrophobic interactions with TYR121A in the active site of the enzyme. The Robusta green coffee extract (ΔG = -35.87 kJ/mol) and dichlorogenic acid fraction (ΔG = -19-29 kJ/mol) showed the highest affinity. Dichlorogenic acids (3,4-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, and 3,4-O-dicaffeoylquinic acid) have high affinity for AChE as single compounds (ΔG(ITC) = -48.99-55.36 kJ/mol, ΔG(LF/AD) = -43.38-45.38 kJ/mol). The concentration necessary to reduce AChE activity by 50% amounted to 0.22 μmol/μmol chlorogenic acids to the enzyme.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Horacio Pérez-Sánchez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Miguel Carmena-Bargueño
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Alejandro Rodríguez-Martínez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Grażyna Budryn
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| |
Collapse
|
4
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Putri AF, Utomo DH, Tunjung WAS, Putri WA. Analysis of the anti-Alzheimer potential of bioactive compounds from Citrus hystrix DC. peel, leaf, and essential oil by network pharmacology. Heliyon 2024; 10:e33496. [PMID: 39050443 PMCID: PMC11267028 DOI: 10.1016/j.heliyon.2024.e33496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.
Collapse
Affiliation(s)
- Adhisa Fathirisari Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
- Biosystem Education Center, Brawijaya University, Malang, 65145, Indonesia
| | - Woro Anindito Sri Tunjung
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Wahyu Aristyaning Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Van Nguyen H, Ha NX, Nguyen DP, Pham TH, Nguyen MT, Thi Nguyen HM. A theoretical screening of phytochemical constituents from Millettia brandisiana as inhibitors against acetylcholinesterase. Phys Chem Chem Phys 2024; 26:16898-16909. [PMID: 38833268 DOI: 10.1039/d3cp05350d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease is one of the causes associated with the early stages of dementia. Nowadays, the main treatment available is to inhibit the actions of the acetylcholinesterase (AChE) enzyme, which has been identified as responsible for the disease. In this study, computational methods were used to examine the structure and therapeutic ability of chemical compounds extracted from Millettia brandisiana natural products against AChE. This plant is commonly known as a traditional medicine in Vietnam and Thailand for the treatment of several diseases. Furthermore, machine learning helped us narrow down the choice of 85 substances for further studies by molecular docking and molecular dynamics simulations to gain deeper insights into the interactions between inhibitors and disease proteins. Of the five top-choice substances, γ-dimethylallyloxy-5,7,2,5-tetramethoxyisoflavone emerges as a promising substance due to its large free binding energy to AChE and the high thermodynamic stability of the resulting complex.
Collapse
Affiliation(s)
- Hue Van Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Duy Phuong Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| | - Tho Hoan Pham
- Faculty of Information Technology and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Hue Minh Thi Nguyen
- Faculty of Chemistry and Center for Computational Science, Hanoi National University of Education, Hanoi, Vietnam.
| |
Collapse
|
7
|
Feunaing RT, Tamfu AN, Gbaweng AJY, Kucukaydin S, Tchamgoue J, Lannang AM, Lenta BN, Kouam SF, Duru ME, Anouar EH, Talla E, Dinica RM. In Vitro and Molecular Docking Evaluation of the Anticholinesterase and Antidiabetic Effects of Compounds from Terminalia macroptera Guill. & Perr. (Combretaceae). Molecules 2024; 29:2456. [PMID: 38893333 PMCID: PMC11174011 DOI: 10.3390/molecules29112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and evaluated for their AChE, BChE, α-amylase, and α-glucosidase inhibitions. From 1H and 13C NMR data, the compounds were identified as 3,3'-di-O-methyl ellagic acid (1), 3,3',4'-tri-O-methyl ellagic acid-4-O-β-D-xylopyranoside (2), 3,3',4'-tri-O-methyl ellagic acid-4-O-β-D-glucopyranoside (3), 3,3'-di-O-methyl ellagic acid-4-O-β-D-glucopyranoside (4), myricetin-3-O-rhamnoside (5), shikimic acid (6), arjungenin (7), terminolic acid (8), 24-deoxysericoside (9), arjunglucoside I (10), and chebuloside II (11). The derivatives of ellagic acid (1-4) showed moderate to good inhibition of cholinesterases, with the most potent being 3,3'-di-O-methyl ellagic acid, with IC50 values of 46.77 ± 0.90 µg/mL and 50.48 ± 1.10 µg/mL against AChE and BChE, respectively. The compounds exhibited potential inhibition of α-amylase and α-glucosidase, especially the phenolic compounds (1-5). Myricetin-3-O-rhamnoside had the highest α-amylase inhibition with an IC50 value of 65.17 ± 0.43 µg/mL compared to acarbose with an IC50 value of 32.25 ± 0.36 µg/mL. Two compounds, 3,3'-di-O-methyl ellagic acid (IC50 = 74.18 ± 0.29 µg/mL) and myricetin-3-O-rhamnoside (IC50 = 69.02 ± 0.65 µg/mL), were more active than the standard acarbose (IC50 = 87.70 ± 0.68 µg/mL) in the α-glucosidase assay. For α-glucosidase and α-amylase, the molecular docking results for 1-11 reveal that these compounds may fit well into the binding sites of the target enzymes, establishing stable complexes with negative binding energies in the range of -4.03 to -10.20 kcalmol-1. Though not all the compounds showed binding affinities with cholinesterases, some had negative binding energies, indicating that the inhibition was thermodynamically favorable.
Collapse
Affiliation(s)
- Romeo Toko Feunaing
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, 48800 Mugla, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, ‘Dunarea de Jos University’, 47 Domneasca Str., 800008 Galati, Romania
| | - Abel Joel Yaya Gbaweng
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, 48800 Mugla, Turkey
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Joseph Tchamgoue
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
| | - Alain Meli Lannang
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
| | - Simeon Fogue Kouam
- Department of Chemistry, Higher Teacher Training College, The University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Ab-dulaziz University, Al-Kharj P.O. Box 83, Saudi Arabia
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Sciences, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, ‘Dunarea de Jos University’, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
8
|
Grodner B, Pisklak DM, Szeleszczuk Ł. Succinimide Derivatives as Acetylcholinesterase Inhibitors-In Silico and In Vitro Studies. Curr Issues Mol Biol 2024; 46:5117-5130. [PMID: 38920979 PMCID: PMC11202142 DOI: 10.3390/cimb46060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme's activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis-Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme's active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives.
Collapse
Affiliation(s)
- Błażej Grodner
- Chair and Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
9
|
Fatima M, Siddiqui WA, Choudhary MI, Ashraf A, Niaz S, Raza MA, Alam SM, Ashfaq M, Tahir MN, Dahlous KA. Synthesis of dimeric 1,2-benzothiazine 1,1-dioxide scaffolds: molecular structures, Hirshfeld surface analysis, DFT and enzyme inhibition studies. RSC Adv 2024; 14:16935-16944. [PMID: 38808235 PMCID: PMC11130764 DOI: 10.1039/d4ra02009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
1,2-Benzothiazines are bioactive compounds with diverse pharmacological properties. We report here the synthesis of a series of dimers containing 1,2-benzothiazine scaffolds as potential pharmacophores. The characterization of compounds was done using analytical techniques such as FT-IR, 1H NMR, and elemental analyses. The molecular structures of the compounds (5-8) were confirmed by X-ray crystallography. The molecular interactions in compounds (5-8) were determined by Hirshfeld Surface Analysis (HSA). Density functional theory (DFT) investigations were carried out to calculate vibrational properties, NMR behaviour, dipole moments, molecular electrostatic potential (MEP), frontier molecular orbital (FMO), natural bonding orbital (NBO) analysis and global reactivity descriptors. The global reactivity descriptors indicated the charge transfer reactions and stabilized as follows: 8 > 7 > 6 > 5. In FMO analysis a substantial HOMO-LUMO gap, ranging from 4.43 to 5.12 eV, with high LUMO values was observed for all compounds, while the highest value for linear polarizability was found in compound 8. The in vitro and in silico studies confirm that compound 8 is more active toward AChE and BChE enzymes.
Collapse
Affiliation(s)
- Muqudis Fatima
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | | | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H. E. J Research Institute of Chemistry, University of Karachi Karachi Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Shanawer Niaz
- Department of Physics, Thal University Bhakkar Bhakkar 30000 Pakistan
| | | | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University New Town Kolkata 700 156 India
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha Sargodha-40100 Pakistan
| | | | - Kholood Ahmed Dahlous
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
10
|
De-la-Torre P, Martínez-García C, Gratias P, Mun M, Santana P, Akyuz N, González W, Indzhykulian AA, Ramírez D. Identification of Druggable Binding Sites and Small Molecules as Modulators of TMC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583611. [PMID: 38826329 PMCID: PMC11142246 DOI: 10.1101/2024.03.05.583611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. Despite extensive research on otoprotective compounds targeting MET channels, our understanding of how small molecule modulators interact with these channels remains limited, hampering the discovery of novel compounds. Here, we propose a structure-based screening approach, integrating 3D-pharmacophore modeling, molecular simulations, and experimental validation. Our pipeline successfully identified several novel compounds and FDA-approved drugs that reduced dye uptake in cultured cochlear explants, indicating MET modulation activity. Molecular docking and free-energy estimations for binding allowed us to identify three potential drug binding sites within the channel pore, phospholipids, and key amino acids involved in modulator interactions. We also identified shared ligand-binding features between TMC and structurally related TMEM16 protein families, providing novel insights into their distinct inhibition, while potentially guiding the rational design of MET-channel-specific modulators. Our pipeline offers a broad application to discover small molecule modulators for a wide spectrum of mechanosensitive ion channels.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | | | - Paul Gratias
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Matthew Mun
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Paula Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - David Ramírez
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Chile
| |
Collapse
|
11
|
Ali HM, Abdel-Aty B, El-Sayed W, Mariy FM, Hegazy GM, Mohamed RA, Zoghly HM. Imidacloprid effects on acetylcholinesterase and nicotinic acetylcholine receptor in Apis mellifera. Experimental and molecular modeling approaches. CHEMOSPHERE 2024; 356:141899. [PMID: 38579952 DOI: 10.1016/j.chemosphere.2024.141899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Although the neonicotinoid insecticides have good selectivity towards insects rather than vertebrates, they have severe effects on honeybee production and pollination activities. Therefore, the effects of imidacloprid (IMI), the most used neonicotinoid, on the two main bioreceptors, acetylcholinesterase (AChE) and nicotinic acetylcholine receptor alpha subunit (nAChRα1) of honeybees were examined to identify their roles in honeybee toxicity and possible binding sites which assist in selecting and designing neonicotinoids. In vivo, IMI showed a high inhibitory effect on AChE (IC50 5.63 mg/L); however, the effect was much lower in vitro experiment (IC50 719 mg/L). This result induced us to examine the IMI effect on AChE gene expression which revealed that the AChE-2 gene expression was severely affected by IMI explaining the observed high enzyme inhibition. In addition, although toxicity increased by increasing exposure to IMI (LC50 2.9 mg/L after 4h and 0.75 mg/L after 48h), AChE was not elevated (IC50 5.63 and 5.52 mg/L respectively). Besides, Despite resuming most enzyme activity (77% during 2 h and 84.14% after 4 h), a high mortality level was observed with LC50 2.9 mg/L. These results reinforced that the observed high toxicity is a multifactor process. Accordingly, Molecular modeling and docking of IMI into honeybee AChE and nAChRα1were also performed to examine their possible interactions and identify the important binding sites. Results models indicated that the first two binding sites in AChE were found in the esteratic subunit in the active site explaining the observed in vitro inhibition. In nAChRα1, four of the highest five free energy binding sites are located in the large TM3-TM4 loop and one in the extracellular loops. Consequently, the present work revealed that IMI toxicity is attributed to various factors including direct interaction with both AChE and nAChRα1 as well as downregulating AChE-2 gene expression.
Collapse
Affiliation(s)
- Hussein M Ali
- Agricultural Biochemistry Dept, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt.
| | - Basma Abdel-Aty
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Walaa El-Sayed
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Faiza M Mariy
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Gamal M Hegazy
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Rehab A Mohamed
- Genetic Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| | - Hala M Zoghly
- Genetic Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shoubra 11241, Cairo, Egypt
| |
Collapse
|
12
|
Lu Z, Yang J, Xu X, Liu R, Lin S. Regulation mechanisms of sea cucumber peptides against scopolamine-induced memory disorder and novel memory-improving peptides identification. Eur J Pharmacol 2024; 968:176430. [PMID: 38369274 DOI: 10.1016/j.ejphar.2024.176430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.
Collapse
Affiliation(s)
- Zhiqiang Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Jingqi Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Xiaomeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Ruowen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China; Engineering Research Center of Special Dietary Food of Liaoning Province, Food Engineering Technology Research Center of Liaoning Province, Dalian, 116034, PR China.
| |
Collapse
|
13
|
Adarvez-Feresin CW, Ortiz JE, Piñeiro MD, Parravicini O, Enriz RD, Garro AD, Feresin GE. Inhibitory effect of galantamine and donepezil combination against cholinesterase: An in silico and in vitro study. Arch Pharm (Weinheim) 2024; 357:e2300581. [PMID: 38229212 DOI: 10.1002/ardp.202300581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
This study aimed to evaluate the in silico and in vitro inhibitory effect of the combined use of galantamine (GAL) and donepezil (DON) against acetylcholinesterase and butyrylcholinesterase (BuChE) enzymes. In silico and in vitro cholinesterase analysis were carried out for GAL and DON alone and combined. Molecular modeling studies were carried out (docking analysis, molecular dynamics simulation, and quantum theory of atoms in molecules). Cholinesterase's inhibitory activities by modified Ellman's method and the drug combination effect using the Chou-Talalay method were assayed. GAL/DON combination showed the co-occupancy of the ligands in both enzymes through in silico studies. Regarding in vitro BuChE inhibition analyses, three of five combinations showed an interaction between GAL and DON at the threshold of additive affect (0.9 < CI < 1.1), with a tendency toward a synergistic effect for higher concentrations. This is the first report showing the efficacy of the GAL/DON combinations inhibiting BuChE, showing the importance of analyzing the behavior of different ligands when co-occupancy into the active site is possible. These combinations might be a possible therapy to improved efficacy, reduced doses, minor side effects, and high levels of the neurotransmitter in the synaptic space for Alzheimer's disease.
Collapse
Affiliation(s)
- Camila W Adarvez-Feresin
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Javier E Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, San Juan, Argentina
| | - Mauricio D Piñeiro
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, San Juan, Argentina
| | - Oscar Parravicini
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Ricardo D Enriz
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Adriana D Garro
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, San Juan, Argentina
| |
Collapse
|
14
|
Yagi S, Ulusan MD, Sinan KI, Caprioli G, Mustafa AM, Angeloni S, Ahıskalı M, Zengin G. HPLC-MS/MS Profiles, Antioxidant, Neuroprotective, Antidiabetic and Skin Protective Effects of Different Extracts of Vicia peregrina L. Collected from the Eastern Region of Turkey. Chem Biodivers 2024; 21:e202400040. [PMID: 38265183 DOI: 10.1002/cbdv.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
Many Vicia species (Fabaceae) were proven to possess bioactive compounds with potential health beneficial properties. The present study was designed to determine the phenolic constituents, antioxidant and enzyme inhibition activities of aerial parts and seed of V. peregrina. Hexane, ethyl acetate and methanol extracts were prepared by maceration and aqueous extract by infusion. The chemical compositions of the extracts were determined using HPLC-MS/MS technology. The antioxidant activities were examined using various assays including free radical scavenging (ABTS and DPPH), reducing ability (CUPRAC and FRAP), metal chelation, and phosphomolybdenum. The enzyme inhibitory effects were investigated against cholinesterase, tyrosinase, amylase and glucosidase. The highest total phenolics and flavonoids contents were recorded in the methanol extracts of the seed (45.42 mg GAE/g) and aerial parts (40.33 mg RE/g) respectively. The aerial parts were characterized by higher accumulation of chlorogenic acid (9893.86 μg g-1 ), isoquercitrin (9400.33 μg g-1 ), delphindin 3,5 diglucoside (9113.28 μg g-1 ), hyperoside (6337.09 μg g-1 ), rutin (3489.83 μg g-1 ) and kaempferol-3-glucoside (2872.84 μg g-1 ). Generally, the methanol and aqueous extracts of the two studied parts exerted the best antioxidant activity with highest anti-DPPH (61.99 mg TE/g), anti-ABTS (101.80 mg TE/g) and Cu++ (16169 mg TE/g) and Fe+++ (172,36 mg TE/g) reducing capacity were recorded from the seed methanol extract. Methanol extract of the seed showed the best anti-tyrosinase activity (75.86 mg KAE/g). These results indicated that V. peregrina is rich with bioactive phenolics suggesting their use in different health promoting applications.
Collapse
Affiliation(s)
- Sakina Yagi
- Université de Lorraine, INRAE, LAE, F-54000, Nancy, France
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Musa Denizhan Ulusan
- Isparta University of Applied Sciences, Faculty of Forestry, Forest Engineering, Isparta, Turkey
| | | | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Ahmed M Mustafa
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Mihriban Ahıskalı
- Deparment of Biology, Graduate School of Natural and Applied Sciences, Bursa Uludag University, Bursa, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
15
|
Jevtić II, Suručić RV, Tovilović-Kovačević G, Zogović N, Kostić-Rajačić SV, Andrić DB, Penjišević JZ. Multi-target potential of newly designed tacrine-derived cholinesterase inhibitors: Synthesis, computational and pharmacological study. Bioorg Med Chem 2024; 101:117649. [PMID: 38401458 DOI: 10.1016/j.bmc.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-β (Aβ) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.
Collapse
Affiliation(s)
- Ivana I Jevtić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Relja V Suručić
- University of Banja Luka, Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Gordana Tovilović-Kovačević
- University of Belgrade-Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Nevena Zogović
- University of Belgrade-Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Slađana V Kostić-Rajačić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Deana B Andrić
- University of Belgrade, Faculty of Chemistry, Department of Organic chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
| | - Jelena Z Penjišević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| |
Collapse
|
16
|
Drakontaeidi A, Pontiki E. Multi-Target-Directed Cinnamic Acid Hybrids Targeting Alzheimer's Disease. Int J Mol Sci 2024; 25:582. [PMID: 38203753 PMCID: PMC10778916 DOI: 10.3390/ijms25010582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive cognitive decline in Alzheimer's disease (AD) is a growing challenge. Present therapies are based on acetylcholinesterase inhibition providing only temporary relief. Promising alternatives include butyrylcholinesterase (BuChE) inhibitors, multi-target ligands (MTDLs) that address the multi-factorial nature of AD, and compounds that target oxidative stress and inflammation. Cinnamate derivatives, known for their neuroprotective properties, show potential when combined with established AD agents, demonstrating improved efficacy. They are being positioned as potential AD therapeutic leads due to their ability to inhibit Aβ accumulation and provide neuroprotection. This article highlights the remarkable potential of cinnamic acid as a basic structure that is easily adaptable and combinable to different active groups in the struggle against Alzheimer's disease. Compounds with a methoxy substitution at the para-position of cinnamic acid display increased efficacy, whereas electron-withdrawing groups are generally more effective. The effect of the molecular volume is worthy of further investigation.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
17
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Thakur A, Sharma B, Parashar A, Sharma V, Kumar A, Mehta V. 2D-QSAR, molecular docking and MD simulation based virtual screening of the herbal molecules against Alzheimer's disorder: an approach to predict CNS activity. J Biomol Struct Dyn 2024; 42:148-162. [PMID: 36970779 DOI: 10.1080/07391102.2023.2192805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Acetylcholinesterase (AChE) is one of the key enzyme targets that have been used clinically for the management of Alzheimer's Disorder (AD). Numerous reports in the literature predict and demonstrate in-vitro, and in-silico anticholinergic activity of herbal molecules, however, majority of them failed to find clinical application. To address these issues, we developed a 2D-QSAR model that could efficiently predict the AChE inhibitory activity of herbal molecules along with predicting their potential to cross the blood-brain-barrier (BBB) to exert their beneficial effects during AD. Virtual screening of the herbal molecules was performed and amentoflavone, asiaticoside, astaxanthin, bahouside, biapigenin, glycyrrhizin, hyperforin, hypericin, and tocopherol were predicted as the most promising herbal molecules for inhibiting AChE. Results were validated through molecular docking, atomistic molecular dynamics simulations and Molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) studies against human AChE (PDB ID: 4EY7). To determine whether or not these molecules can cross BBB to inhibit AChE within the central nervous system (CNS) for being beneficial for the management of AD, we determined a CNS Multi-parameter Optimization (MPO) score, which was found in the range of 1 to 3.76. Overall, the best results were observed for amentoflavone and our results demonstrated a PIC50 value of 7.377 nM, molecular docking score of -11.5 kcal/mol, and CNS MPO score of 3.76. In conclusion, we successfully developed a reliable and efficient 2D-QSAR model and predicted amentoflavone to be the most promising molecule that could inhibit human AChE enzyme within the CNS and could prove beneficial for the management of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aman Thakur
- DCO, Govt. of Rajasthan, Bharatpur, Rajasthan, India
| | - Bhanu Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Vivek Sharma
- Department of Pharmacology, Govt. College of Pharmacy, Shimla, Himachal Pradesh, India
| | - Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vineet Mehta
- Department of Pharmacology, Govt. College of Pharmacy, Shimla, Himachal Pradesh, India
| |
Collapse
|
19
|
Naseem S, Khan S, Hussain S, Mirza MU, Ashraf M, Shafiq Z, Trant JF. Synthesis, biological evaluation, and molecular docking study of xanthene-linked thiosemicarbazones as cholinesterase inhibitors. J Biomol Struct Dyn 2023:1-15. [PMID: 37948312 DOI: 10.1080/07391102.2023.2274981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This study delineates the design and synthesis of a series of xanthene-based thiosemicarbazones that show low μM inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), crucial enzymes associated with, among others, Alzheimer's Disease (AD) pathology. Despite FDA-approved AChE inhibitors being frontline treatments for AD, there remains a need for agents exhibiting improved efficacy and selectivity. Our synthesized series demonstrate meaningful inhibition against AChE (IC50 ranging from 4.2 to 62 μM). These compounds exhibit comparatively lower potency against BChE (IC50 values between 64 and 315 μM), showcasing a pronounced AChE selectivity compared to physostigmine. The selectivity index for the compounds between the two targets does vary between 0.02 and 0.75 highlighting that even minor structural differences can have drastic effects on protein interactions. Molecular docking insights further substantiated these observations, revealing the importance of the xanthene scaffold for AChE-binding and the aryl R2 moiety for BChE interactions. Notably, some compounds demonstrated dual enzyme targeting, emphasizing their interactions could be exploited for developing monotherapies against cholinesterase-associated neurodegenerative afflictions like AD. Collectively, these findings suggest that xanthene-based thiosemicarbazones are a promising and highly accessible scaffold that deserve further investigative exploration in the cholinesterase inhibitor therapeutic landscape.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Samra Khan
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| | - Safdar Hussain
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmaceutical & Medicinal Chemistry, Universitat Bonn, Bonn, Germany
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Canada
| |
Collapse
|
20
|
Shen R, Zhao W, Li X, Liu J, Yang A, Kou X. Emodin derivatives as promising multi-aspect intervention agents for amyloid aggregation: molecular docking/dynamics simulation, bioactivities evaluation, and cytoprotection. Mol Divers 2023:10.1007/s11030-023-10733-4. [PMID: 37737959 DOI: 10.1007/s11030-023-10733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with complex pathogenesis. Despite the pathogenesis is unknown, the misfolding and accumulation of β-amyloid (Aβ) peptide play the important role in the occurrence and development of AD. Hence, multi-aspect intervention of the misfolded Aβ peptides aggregation is a promising therapy for AD. In previous work, we obtained the emodin derivatives (a-d) with multifunctional anti-AD activities, including metal ions chelation, cholinesterase inhibition, and hydroxyl/superoxide anion radical elimination. In this work, we predicted the interaction of emodin derivatives (a-d) with Aβ by combining molecular docking simulation and molecular dynamics simulation, and evaluated the ability to intervene with the self-, Cu2+- and AChE-induced Aβ aggregation via in vitro methods. The results indicated that a-d could act as the potent multi-aspect intervention agents for Aβ aggregation. In addition, a-d could effectively eliminate peroxyl radical, had virtually no neurotoxicity, and protect cells from oxidative and Aβ-induced damage. The prediction results of ADMET properties showed that a-d had suitable pharmacokinetic characteristics. It suggested that a-d could act as the promising multi-targeted directed ligands (MTDLs) for AD. These results may provide meaningful information for the development of the potential MTDLs for AD which are modified from natural-origin scaffolds.
Collapse
Affiliation(s)
- Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Wenshuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
21
|
Godinez J, Lee CY, Schwans JP. Synthesis and evaluation of Fmoc-amino esters and amides bearing a substrate like quaternary ammonium group as selective butyrylcholinesterase inhibitors. Bioorg Med Chem Lett 2023; 92:129392. [PMID: 37364726 DOI: 10.1016/j.bmcl.2023.129392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The depletion of the neurotransmitter acetylcholine has been suggested to contribute to the reduced cognitive function observed in individuals suffering from neurodegenerative diseases such as Alzheimer's Disease (AD). For the two major cholinesterases, butyrylcholinesterase (BChE) and acetylcholinesterase (AChE), increased BChE activity observed in individuals with AD has been suggested to deplete acetylcholine levels. To reduce acetylcholine degradation and help restore the pool of the neurotransmitter, specific and potent BChE inhibitors are sought. Our previous findings have identified 9-fluorenylmethoxycarbonyl (Fmoc) amino acid-based inhibitors as effective BChE inhibitors. The amino acid-based compounds offered the opportunity to survey a range of structural features to enhance interactions with the enzyme active site. As enzymes interact with features of their substrates, incorporation of substrate-like features was predicted to lead to better inhibitors. Specifically, incorporation of a trimethylammonium moiety to mimic the cationic group of acetylcholine may lead to increased potency and selectivity. To test this model, a series of inhibitors bearing a cationic trimethylammonium group were synthesized, purified, and characterized. While the Fmoc-ester derivatives inhibited the enzyme, additional experiments showed the compounds acted as substrates and were enzymatically hydrolyzed. Inhibition studies with the Fmoc-amide derivatives showed that the compounds do not act as substrates and selectively inhibit BChE with IC50 values in the 0.06-10.0 µM range. Computational docking studies suggest that the inhibitors can interact with cholinyl binding site and peripheral site. Overall, the results suggest that introducing substrate-like characteristics within the Fmoc-amino acid-based background increases their potency. The versatile and ready access to amino acid-based compounds offers an attractive system to further our understanding of the relative importance of protein-small molecule interactions while guiding the development of better inhibitors.
Collapse
Affiliation(s)
- Jonathan Godinez
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9507, United States
| | - Catherine Y Lee
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9507, United States
| | - Jason P Schwans
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9507, United States.
| |
Collapse
|
22
|
Brinza I, Boiangiu RS, Cioanca O, Hancianu M, Dumitru G, Hritcu L, Birsan GC, Todirascu-Ciornea E. Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants (Basel) 2023; 12:1534. [PMID: 37627529 PMCID: PMC10451280 DOI: 10.3390/antiox12081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oil from Coriandrum sativum has been demonstrated to provide various pharmacological properties, such as antioxidant, antimicrobial, antibacterial, antifungal, antidiabetic, anticonvulsive, anxiolytic-antidepressant, and anti-aging properties. This study investigated the mechanism of Coriandrum sativum var. microcarpum essential oil (CSEO, 25, 150, and 300 μL/L) and cognitive impairment and brain oxidative stress in a scopolamine (SCOP, 100 μM) zebrafish model (Danio rerio) of cognitive impairment. Spatial memory, response to novelty, and recognition memory were assessed using the Y-maze test and the novel object recognition test (NOR), while anxiety-like behavior was investigated using the novel tank diving test (NTT). The cholinergic system activity and brain oxidative stress were also evaluated. CSEO was administered to zebrafish once a day for 21 days, while SCOP and galantamine (GAL, 1 mg/L) were delivered 30 min before behavioral testing and euthanasia. Our data revealed that SCOP induced memory dysfunction and anxiety-like behavior, while CSEO improved memory performance, as evidenced by behavioral tasks. Moreover, CSEO attenuated SCOP-induced brain oxidative stress and decreased acetylcholinesterase (AChE) activity. The results demonstrated the potential use of the CSEO in providing beneficial effects by reducing memory deficits and brain oxidative stress involved in the genesis of a dementia state.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Gheorghe-Ciprian Birsan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| |
Collapse
|
23
|
Calva J, Ludeña C, Bec N, Larroque C, Salinas M, Vidari G, Armijos C. Constituents and Selective BuChE Inhibitory Activity of the Essential Oil from Hypericum aciculare Kunth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2621. [PMID: 37514236 PMCID: PMC10383752 DOI: 10.3390/plants12142621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
A potential source of new inhibitors of cholinesterase enzymes are certain compounds of natural plant origin; therefore, in the study described herein we have determined the chemical composition and the acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of the essential oil (EO) steam distilled from aerial parts of Hypericum aciculare, which was collected in southern Ecuador. The oil qualitative and quantitative composition was determined by GC-FID and GC-MS using a non-polar and a polar chromatographic column. A total of fifty-three constituents were identified, that accounted for about 98% of the EO content. The hydrocarbon n-nonane (16.4-28.7%) and the aldehyde n-decanal (20.7-23.1%) were the predominant oil constituents. In addition, the EO showed significant inhibition of BuChE (IC50 = 28.3 ± 2.7 μg/mL) and moderate activity towards AChE (IC50 = 82.1 ± 12.1 µg/mL). Thus, the EO from H. aciculare aerial parts is an interesting candidate to investigate the mechanism of selective ChE inhibition by the two ChE enzymes with the aim to discover potential targets to control the progression of the Alzheimer's disease (AD).
Collapse
Affiliation(s)
- James Calva
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Carlos Ludeña
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Nicole Bec
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
| | - Christian Larroque
- Institute for Regenerative Medicine and Biotherapy (IRMB), Université de Montpellier, National Institute of Health, and Medical Research (INSERM), 34295 Montpellier, France
- Department Nephrol Dialysis & Transplantat, Montpellier University Hospital, 34295 Montpellier, France
| | - Melissa Salinas
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil 44001, Iraq
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador
| |
Collapse
|
24
|
Galeana-Ascencio RA, Mendieta L, Limon DI, Gnecco D, Terán JL, Orea ML, Carrasco-Carballo A. β-Secretase-1: In Silico Drug Reposition for Alzheimer's Disease. Int J Mol Sci 2023; 24:8164. [PMID: 37175873 PMCID: PMC10179340 DOI: 10.3390/ijms24098164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The β-secretase-1 enzyme (BACE-1) performs a key role in the production of beta-Amyloid protein (Aβ), which is associated with the development of Alzheimer's disease (AD). The inhibition of BACE-1 has been an important pharmacological strategy in the treatment of this neurodegenerative disease. This study aims to identify new potential candidates for the treatment of Alzheimer's with the help of in silico studies, such as molecular docking and ADME prediction, from a broad list of candidates provided by the DrugBank database. From this analysis, 1145 drugs capable of interacting with the enzyme with a higher coupling energy than Verubecestat were obtained, subsequently only 83 presented higher coupling energy than EJ7. Applying the oral route of administration as inclusion criteria, only 41 candidates met this requirement; however, 6 of them are associated with diagnostic tests and not treatment, so 33 candidates were obtained. Finally, five candidates were identified as possible BACE-1 inhibitors drugs: Fluphenazine, Naratriptan, Bazedoxifene, Frovatriptan, and Raloxifene. These candidates exhibit pharmacophore-specific features, including the indole or thioindole group, and interactions with key amino acids in BACE-1. Overall, this study provides insights into the potential use of in silico methods for drug repurposing and identification of new candidates for the treatment of Alzheimer's disease, especially those targeting BACE-1.
Collapse
Affiliation(s)
| | | | - Daniel I. Limon
- Laboratorio de Neurofarmacología, FCQ, BUAP, Puebla 72570, Mexico
| | - Dino Gnecco
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - Joel L. Terán
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - María L. Orea
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| | - Alan Carrasco-Carballo
- Laboratorio de Elucidación y Síntesis en Química Orgánica, ICUAP, BUAP, Puebla 72570, Mexico;
- Centro de Química, ICUAP, BUAP, Puebla 72570, Mexico
| |
Collapse
|