1
|
Yang Q, Xu W, Sun X, Chen Q, Niu B. The Application of Machine Learning in Doping Detection. J Chem Inf Model 2024; 64:8673-8683. [PMID: 39574320 DOI: 10.1021/acs.jcim.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Detecting doping agents in sports poses a significant challenge due to the continuous emergence of new prohibited substances and methods. Traditional detection methods primarily rely on targeted analysis, which is often labor-intensive and is susceptible to errors. In response, machine learning offers a transformative approach to enhancing doping screening and detection. With its powerful data analysis capabilities, machine learning enables the rapid identification of patterns and features in complex compound data, increasing both the efficiency and the accuracy of detection. Moreover, when integrated with nontargeted metabolomics, machine learning can predict unknown metabolites, aiding the discovery of long-lasting biomarkers of doping. It also excels in classifying novel compounds, thereby reducing false-negative rates. As instrumental analysis and machine learning technologies continue to advance, the development of rapid, scalable, and highly efficient doping detection methods becomes increasingly feasible, supporting the pursuit of fairness and integrity in sports competitions.
Collapse
Affiliation(s)
- Qingqing Yang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wennuo Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaodong Sun
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Li R, Su P, Shi Y, Shi H, Ding S, Su X, Chen P, Wu D. Gene doping detection in the era of genomics. Drug Test Anal 2024; 16:1468-1478. [PMID: 38403949 DOI: 10.1002/dta.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent progress in gene editing has enabled development of gene therapies for many genetic diseases, but also made gene doping an emerging risk in sports and competitions. By delivery of exogenous transgenes into human body, gene doping not only challenges competition fairness but also places health risk on athletes. World Anti-Doping Agency (WADA) has clearly inhibited the use of gene and cell doping in sports, and many techniques have been developed for gene doping detection. In this review, we will summarize the main tools for gene doping detection at present, highlight the main challenges for current tools, and elaborate future utilizations of high-throughput sequencing for unbiased, sensitive, economic and large-scale gene doping detections. Quantitative real-time PCR assays are the widely used detection methods at present, which are useful for detection of known targets but are vulnerable to codon optimization at exon-exon junction sites of the transgenes. High-throughput sequencing has become a powerful tool for various applications in life and health research, and the era of genomics has made it possible for sensitive and large-scale gene doping detections. Non-biased genomic profiling could efficiently detect new doping targets, and low-input genomics amplification and long-read third-generation sequencing also have application potentials for more efficient and straightforward gene doping detection. By closely monitoring scientific advancements in gene editing and sport genetics, high-throughput sequencing could play a more and more important role in gene detection and hopefully contribute to doping-free sports in the future.
Collapse
Affiliation(s)
- Ruihong Li
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, China
| | - Peipei Su
- Innovative Program of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqian Ding
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| | - Xianbin Su
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- eHealth Program of Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Wang A, Fu L. Nano-Functional Materials for Sensor Applications. Molecules 2024; 29:5515. [PMID: 39683674 DOI: 10.3390/molecules29235515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The rapid development of nanotechnology and materials science has led to remarkable advances in sensor applications across various fields [...].
Collapse
Affiliation(s)
- Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Bojarczuk A. Ethical Aspects of Human Genome Research in Sports-A Narrative Review. Genes (Basel) 2024; 15:1216. [PMID: 39336807 PMCID: PMC11430849 DOI: 10.3390/genes15091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Human genome research in sports raises complex ethical considerations regarding the intersection of genetics and athletic performance. Pursuing genetic enhancements must uphold fairness, equality, and respect for human dignity. This narrative review explores the ethical dimensions of human genome research in sports, its potential implications on athletes, and the integrity of sports. As a narrative review, this study synthesizes the existing literature and expert insights to examine the ethical aspects of human genome research in sports. This study extensively examined the current literature on genetics, sports performance, ethical concerns, human rights, and legal regulations within the European context. The literature was searched using the SPORTDiscus, Scopus, Google Scholar, and PubMed databases. Exploring human genome research in sports reveals significant ethical implications, including potential genetic discrimination, impacts on human rights, and creating a genetic underclass of athletes. There are also definite benefits surrounding genetic testing. In conclusion, this review contends that integrating ethical considerations into developing and applying genetic technologies in sports is crucial to upholding fundamental principles of fairness, equality, and respect for human dignity. It stresses the importance of open and inclusive dialogue about the potential consequences of genetic advancements on athletic performance, future generations, and the integrity of sports.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Biochemistry Department, Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
5
|
Nalakath J, Rasik RP, Kadry A, Babu A, Waseem I, Ok P, Hebel C, Selvapalam N, Nagarajan ER. Characterizing Lomerizine metabolites in camel urine: High-resolution mass spectrometry method development and validation for enhanced doping control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9846. [PMID: 38923663 DOI: 10.1002/rcm.9846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Lomerizine (LMZ) is an antimigraine drug that works as a calcium channel blocker and has selective effects on the central nervous system. It is metabolized into trimetazidine (TMZ), which is a prohibited substance owing to its performance-enhancing effects in both human and animal sports. Effective doping control measures are imperative to distinguish the source of TMZ in samples to ensure integrity and fairness of the sport, therefore a comprehensive analysis of LMZ metabolites is essential to identify potential biomarkers in camel urine for effective doping control. METHODS Camel urine samples were collected from four healthy animals following a single oral administration of LMZ at a dosage of 1 mg/kg body weight. In vitro studies were conducted using homogenized camel liver samples. Lomerizine and its metabolites were extracted using solid-phase extraction and analyzed with a Thermo Fisher Orbitrap Exploris liquid chromatography mass spectrometry system. The acquired data was processed with the Compound Discoverer software. RESULTS The study conducted a comprehensive analysis of LMZ metabolites in camels and identified 10 phase I and one phase II metabolites. The primary pathway for the formation of phase I metabolites was de-alkylation, while phase II metabolite was formed through alkylation of the parent drug. The study provided valuable insights into the unique metabolic pathways of LMZ in camels under specific experimental conditions. CONCLUSION The developed method enables the detection and characterization of LMZ and its metabolites in camels. The identified metabolites has the potential to act as marker metabolites for the distinctive detection of LMZ in camel urine to ensure efficient analytical strategies for routine doping control applications.
Collapse
Affiliation(s)
- Jahfar Nalakath
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, India
| | | | - Ahmed Kadry
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Ansar Babu
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Ibrahim Waseem
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Praseen Ok
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Christiana Hebel
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Narayanan Selvapalam
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnan Kovil, Tamil Nadu, India
| | | |
Collapse
|
6
|
Puchalska M, Witkowska-Piłaszewicz O. Gene doping in horse racing and equine sports: Current landscape and future perspectives. Equine Vet J 2024. [PMID: 39267222 DOI: 10.1111/evj.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Gene doping, the use of gene therapy or genetic manipulation to enhance athletic performance, has emerged as a potential threat to the integrity and welfare of equine sports, such as horse racing and equestrian sports. This review aims to provide an overview of gene doping in horses, including the underlying technologies, potential applications, detection methods, ethical concerns and future perspectives. By understanding the current landscape of gene doping in horses, stakeholders can work together to develop strategies to safeguard the integrity of equine sports.
Collapse
Affiliation(s)
- Maria Puchalska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2024. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
8
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review 16 th edition-Analytical approaches in human sports drug testing 2022/2023. Drug Test Anal 2024; 16:5-29. [PMID: 37985429 DOI: 10.1002/dta.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
In this 16th edition of the annual banned-substance review on analytical approaches in human sports drug testing, literature on recent developments in this particular section of global anti-doping efforts that was published between October 2022 and September 2023 is summarized and discussed. Most recent additions to the continuously growing portfolio of doping control analytical approaches and investigations into analytical challenges in the context of adverse analytical findings are presented, taking into account existing as well as emerging challenges in anti-doping, with specific focus on substances and methods of doping recognized in the World Anti-Doping Agency's 2023 Prohibited List. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls, appreciating the exigence and core mission of anti-doping and, equally, the conflict arising from the opposingly trending extent of the athlete's exposome and the sensitivity of instruments nowadays commonly available in anti-doping laboratories.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|